
A low-latency garbage collector for GHC

Ben Gamari Ömer Sinan Ağacan

Well-Typed

Another typical day. . .
$ cd my-program
$ cat MyProgram.hs
{-# LANGUAGE TypeInType #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE TypeFamilyDependencies #-}
{-# LANGUAGE DependentHaskell #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE MachineCognition #-}
{-# LANGUAGE ViewPatterns #-}

module MyProgram where

Another typical day. . .

$ ghc -O2 -threaded -rtsopts MyProgram.hs
$./MyProgram +RTS -s

...

10,349,259,832 bytes allocated in the heap
22,353,166,880 bytes copied during GC
4,983,805,744 bytes maximum residency (8 sample(s))

2,066,896 bytes maximum slop
4879 MB total memory in use (0 MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause
Gen 0 8983 colls, 0 par 20.001s 0.315s 0.0042s 0.0252s
Gen 1 242 colls, 0 par 30.024s 0.153s 0.0925s 1.3753s

...

What if this program was. . .

I rendering your cat video?

I drawing your text editor’s UI?

I on the critical path in your distributed application?

I driving your car?

I controlling your surgical robot?

Why?

GHC (in its simplest configuration) has a

I generational
I two-space moving
I stop-the-world

garbage collector.

Moving garbage collection

f

Roots

Justfst (,)

I#

42

A B C

D

E

succ

Moving garbage collection

f

Roots

Justfst (,)

I#

42

A B C

D

E

succ

to-spacefrom-space

Moving garbage collection: Evacuate roots

f

Roots

Justfst (,)

I#

42

A B C

D

E

succ

to-spacefrom-space

Moving garbage collection: Evacuate roots

f

Roots

Justfst (,)

I#

42

A B C

D

E

succ

fst

A'

to-spacefrom-space

evacuate

Moving garbage collection: Evacuate roots

f

Roots

Just(,)

I#

42

A B C

D

E

succ

fst

A'

to-spacefrom-space

Moving garbage collection: Evacuate roots

f

Roots

Just(,)

I#

42

A B C

D

E

succ

Scavenging work list:

A'

fst

A'

to-spacefrom-space

Moving garbage collection

f

Just(,)

I#

42

A B C

D

E

succ

Scavenging work list:

A'

fst

A'

to-spacefrom-space

Moving garbage collection: Scavenge A

f

Just(,)

I#

42

A B C

D

E

succ

Scavenging work list:

fst

A'

to-spacefrom-space

scavenge

Moving garbage collection: Evacuate B

f

Just(,)

I#

42

A B C

D

E

succ

Scavenging work list:

B'

fst (,)

A' B'

to-spacefrom-space

evacuate

Moving garbage collection: Evacuate B

f

Just

I#

42

A B C

D

E

succ

Scavenging work list:

B'

fst (,)

A' B'

to-spacefrom-space

evacuate

Moving garbage collection: Evacuate B

f

Just

I#

42

A B C

D

E

succ

Scavenging work list:

B'

fst (,)

A' B'

to-spacefrom-space

Moving garbage collection

f

Just

I#

42

A B C

D

E

succ

Scavenging work list:

B'

fst (,)

A' B'

to-spacefrom-space

Moving garbage collection: Scavenge B

f

Just

I#

42

A B C

D

E

succ

Scavenging work list:

B'

fst (,)

A' B'

to-spacefrom-space

scavenge

Moving garbage collection: Evacuate C

f

Just

I#

42

A B C

D

E

succ

Scavenging work list:

B' C'

fst Just(,)

A' B' C'

to-spacefrom-space

evacuate

Moving garbage collection: Evacuate C

f

I#

42

A B C

D

E

succ

Scavenging work list:

B' C'

fst Just(,)

A' B' C'

to-spacefrom-space

Moving garbage collection: Evacuate C

f

I#

42

A B C

D

E

succ

Scavenging work list:

B' C'

fst Just(,)

A' B' C'

to-spacefrom-space

Moving garbage collection: Scavenging B (cont’d)

f

I#

42

A B C

D

E

succ

Scavenging work list:

C'

fst Just(,)

A' B' C'

to-spacefrom-space

scavenge

Moving garbage collection: Evacuate D

f

I#

42

A B C

D

E

succ

Scavenging work list:

C' D'

fst Just(,)

I#

42

A' B' C'

D'

to-spacefrom-space

evacuate

Moving garbage collection: Evacuate D

f

A B C

D

E

succ

Scavenging work list:

C' D'

fst Just(,)

I#

42

A' B' C'

D'

to-spacefrom-space

evacuate

Moving garbage collection: Scavenging C

f

A B C

D

E

succ

Scavenging work list:

C' D'

fst Just(,)

I#

42

A' B' C'

D'

to-spacefrom-space

scavenge

Moving garbage collection: Scavenging C

f

A B C

D

E

succ

Scavenging work list:

D'

fst Just(,)

I#

42

A' B' C'

D'

to-spacefrom-space

scavenge

Moving garbage collection: Scavenging D

f

A B C

D

E

succ

Scavenging work list:

fst Just(,)

I#

42

A' B' C'

D'

scavenge

to-spacefrom-space

Moving garbage collection: Finished!

f

A B C

D

E

succ

Scavenging work list:

fst Just(,)

I#

42

A' B' C'

D'

to-spacefrom-space

Moving garbage collection: Finished!

f

fst Just(,)

I#

42

A' B' C'

D'

to-spacefrom-space

Moving garbage collection: Why it’s great

I Allocation efficiency

I Lack of fragmentation

I Locality

I Simplicity

I Ease of parallelism

I Cost of collection is O(live data)

Moving garbage collection: Why it’s not so great

I Difficulty of incremental collection

I Even collecting a fraction of the heap requires that we must
search the entire heap for references to moved objects

Low-latency collection

Two ways to reduce pause times:

I incremental collection
I Allow suspension of collection to allow mutator to run.

I concurrent collection
I Allow collection to proceed while mutator runs.

We choose the latter.

Incremental moving collection

Roots

from-space to-space

fst Just(,)

I#

42

A B C

D

Stack

Incremental moving collection: Evacuate A

Roots

from-space to-space

Just(,)

I#

42

A B C

D

Stack

evacuate

fst

A'

Incremental moving collection: Evacuate B

Roots

from-space to-space

Just

I#

42

A B C

D

Stack

evacuate

fst (,)

A' B'

Incremental moving collection: Suspend collection

Roots

from-space to-space

Just

I#

42

A B C

D

Stack

fst (,)

A' B'

Incremental moving collection: Continue mutation

Roots

from-space to-space

Just

I#

42

A B C

D

Stack

Oh no!
resume

evaluation

fst (,)

A' B'

Making incremental moving collection safe

I Ensure that mutator never sees a reference into from-space

I One approach:
I Have mutator check each pointer it dereferences (a read barrier)
I Costly?

Non-Stop Haskell (2000)

But: Pointer tagging (2007)

Pointer tagging by the numbers (2007)

Making incremental moving collection safe

Another approach (Ben-Yitzhak 2002)

I Split heap into n chunks

I Track references between chunks
I Requires cooperation of mutator

I Evacuate/scavenge one chunk at a time

I Scavenge inter-chunk references

I Reduces pause by factor of 1/n

Making incremental moving collection safe

I Moving collection invalidates object references
I Complicates incremental collection

I Perhaps we can avoid it?

I Yes, we can.

I But can we get the best of worlds?

Making incremental moving collection safe

I Moving collection invalidates object references
I Complicates incremental collection

I Perhaps we can avoid it?

I Yes, we can.

I But can we get the best of worlds?

Hybrid moving/non-moving collector

allocates
into

evacuated
 by

allocates
into

collected
by

Mutator

Nursery

Moving
Collector

Non-moving
heap

Non-moving
Collector

I Mutator allocates into a moving nursery
I Young generation collector evacuates into non-moving heap
I Non-moving heap collected with mark & sweep
I Mark & sweep amenable to both incremental and concurrent

collection

Plan for rest of talk

I will describe our concurrent, moving/non-moving hybrid collector
implemented in GHC.

Background What is a mark & sweep garbage collector?

Snapshotting How do we safely trace with concurrent mutation?

Allocator How to provide fresh memory for the minor GC?

Collector How to find dead objects and free them?

Status Where are we today?

Plan for rest of talk

I will describe our concurrent, moving/non-moving hybrid collector
implemented in GHC.

Background What is a mark & sweep garbage collector?

Snapshotting How do we safely trace with concurrent mutation?

Allocator How to provide fresh memory for the minor GC?

Collector How to find dead objects and free them?

Status Where are we today?

Mark & Sweep Garbage Collection

Necessary State
Heap A mark flag per object.

Collector A mark queue of references to objects.

Operations
Mark Push an object’s pointers to the mark queue, set its

mark flag.
Sweep Walk all heap objects, freeing any with un-set mark

flags.

Mark & Sweep Garbage Collection

Necessary State
Heap A mark flag per object.

Collector A mark queue of references to objects.

Operations
Mark Push an object’s pointers to the mark queue, set its

mark flag.
Sweep Walk all heap objects, freeing any with un-set mark

flags.

Mark & Sweep Garbage Collection

Non-Moving
Heap

Roots

fst

A (,)

B Just

C

I#

42

D

Just

E

Mark Queue

Mark & Sweep Garbage Collection: Collect roots

Non-Moving
Heap

Roots

fst

A (,)

B Just

C

I#

42

D

Just

E

Mark Queue

A

Mark & Sweep Garbage Collection: Marking (A)

Non-Moving
Heap

Roots

fst

A (,)

B Just

C

I#

42

D

Just

E

Mark Queue

B

I#

43

F

Mark & Sweep Garbage Collection: Marking (B)

Non-Moving
Heap

Roots

fst

A (,)

B Just

C

I#

42

D

Just

E

Mark Queue

B C D

Mark & Sweep Garbage Collection: Marking (B)

Non-Moving
Heap

Roots

fst

A (,)

B Just

C

I#

42

D

Just

E

Mark Queue

C D

Mark & Sweep Garbage Collection: Marking (C)

Non-Moving
Heap

Roots

fst

A (,)

B Just

C

I#

42

D

Just

E

Mark Queue

D

Mark & Sweep Garbage Collection: Marking (C)

Non-Moving
Heap

Roots

fst

A (,)

B Just

C

I#

42

D

Just

E

Mark Queue

D B

Mark & Sweep Garbage Collection: Marking (C)

Non-Moving
Heap

Roots

fst

A (,)

B Just

C

I#

42

D

Just

E

Mark Queue

D B

Mark & Sweep Garbage Collection: Marking (D)

Non-Moving
Heap

Roots

fst

A (,)

B Just

C

I#

42

D

Just

E

Mark Queue

B

Mark & Sweep Garbage Collection: Marking (B)

Non-Moving
Heap

Roots

fst

A (,)

B Just

C

I#

42

D

Just

E

Mark Queue

Mark & Sweep Garbage Collection: Marking

Non-Moving
Heap

Roots

fst

A (,)

B Just

C

I#

42

D

Just

E

Mark Queue

Mark & Sweep Garbage Collection: Sweep

Non-Moving
Heap

Roots

fst

A (,)

B Just

C

I#

42

D

Mark Queue

Concurrency: The problem of mutation

While non-moving collection does not invalidate references, this
alone is not sufficient for safe concurrent mutation.

Let’s see why. . .

The problem of mutation

Non-Moving
Heap

Roots

MVar

A

I#

42

X

MVar

B

Mark Queue

A B

I#

43

Y

The problem of mutation

Non-Moving
Heap

Roots

MVar

A

I#

42

X

MVar

B

Mark Queue

B X

I#

43

Y

The problem of mutation

Non-Moving
Heap

Roots

MVar

A

I#

42

X

MVar

B

Mark Queue

B X

I#

43

Y

The problem of mutation

Non-Moving
Heap

Roots

MVar

A

I#

42

X

MVar

B

Mark Queue

X X

I#

43

Y

The problem of mutation

Non-Moving
Heap

Roots

MVar

A

I#

42

X

MVar

B

Mark Queue

X

I#

43

Y

The problem of mutation

Non-Moving
Heap

Roots

MVar

A

I#

42

X

MVar

B

Mark Queue

I#

43

Y

The problem of mutation

Non-Moving
Heap

Roots

MVar

A

I#

42

X

MVar

B

Mark Queue

Oh no!

I#

43

Y

The problem of mutation

Non-Moving
Heap

Roots

MVar

A

I#

42

X

MVar

B

Mark Queue

Oh no!

I#

43

Y

Snapshot-at-the-beginning

Solution:

I Collect with respect to the state of heap at start of mark (time
t0).

Concretely, the collector must ensure this property (henceforth the
snapshot invariant):

The collector must mark all objects reachable at t0.

N.B. it is also safe to mark objects that were dead at t0.

Snapshot-at-the-beginning

Solution:

I Collect with respect to the state of heap at start of mark (time
t0).

Concretely, the collector must ensure this property (henceforth the
snapshot invariant):

The collector must mark all objects reachable at t0.

N.B. it is also safe to mark objects that were dead at t0.

Snapshot-at-the-beginning

The snapshot invariant:

The collector must mark all objects reachable at t0.

Consequently,

1. All objects live at t0 will be retained.
2. Many objects dead at t0 will be freed.
3. All objects allocated after t0 will be retained.

How to accomplish this?

A write barrier.

Snapshot-at-the-beginning

The snapshot invariant:

The collector must mark all objects reachable at t0.

Consequently,

1. All objects live at t0 will be retained.
2. Many objects dead at t0 will be freed.
3. All objects allocated after t0 will be retained.

How to accomplish this?

A write barrier.

Snapshot-at-the-beginning

The snapshot invariant:

The collector must mark all objects reachable at t0.

Consequently,

1. All objects live at t0 will be retained.
2. Many objects dead at t0 will be freed.
3. All objects allocated after t0 will be retained.

How to accomplish this?

A write barrier.

Maintaining the snapshot invariant

Non-Moving
Heap

Roots

MVar

A

I#

42

X

MVar

B

Mark Queue

A B

I#

43

Y

Maintaining the snapshot invariant

Non-Moving
Heap

Roots

MVar

A

I#

42

X

MVar

B

Mark Queue

B X

I#

43

Y

Maintaining the snapshot invariant

Non-Moving
Heap

Roots

MVar

A

I#

42

X

MVar

B

Mark Queue

B X

I#

43

Y

Maintaining the snapshot invariant

Non-Moving
Heap

Roots

MVar

A

I#

42

X

MVar

B

Mark Queue

B X Y

I#

43

Y

Maintaining the snapshot invariant

Non-Moving
Heap

Roots

MVar

A

I#

42

X

MVar

B

Mark Queue

X Y

I#

43

Y

Maintaining the snapshot invariant

Non-Moving
Heap

Roots

MVar

A

I#

42

X

MVar

B

Mark Queue

Y

I#

43

Y

Maintaining the snapshot invariant

Non-Moving
Heap

Roots

MVar

A

I#

42

X

MVar

B

Mark Queue

I#

43

Y

Allocator requirements

I Recall: Non-moving allocator serves nursery collector

I Relatively cheap allocation

I Fragmentation-resistant

I Efficient encoding of mark flags

I Snapshot construction must be cheap

I Accommodate concurrent collection and allocation

I Accommodate parallel collection

For simplicity: Let’s first consider an allocator for a single object
size.

Allocator requirements

I Recall: Non-moving allocator serves nursery collector

I Relatively cheap allocation

I Fragmentation-resistant

I Efficient encoding of mark flags

I Snapshot construction must be cheap

I Accommodate concurrent collection and allocation

I Accommodate parallel collection

For simplicity: Let’s first consider an allocator for a single object
size.

Allocator structure: The segment

mark bit

blocks

block size

Allocator structure: The segment

mark bit

blocks

next
free

Allocator structure: The segment

mark bit

blocks

next
free

Allocator structure: The segment

mark bit

blocks

next
free

Allocator structure: The segment

mark bit

blocks

next
free

Allocator structure: The segment

mark bit

blocks

next
free

Allocator structure: The segment

I Note that we did not set the mark bit during allocation

I Each capability has a current segment which serves its
allocations.

Allocator structure: Segment states

Current Filled

Free

Active

To
sweep

Free segment A segment containing no live objects.

Current segment A segment being used by a capability as an
allocation target.

Filled segment A segment having no unallocated blocks.

To-sweep segment A filled segment that will be swept during the
current major GC cycle.

Active segment A segment containing at least one live object.

Allocator structure: Segment lists

...

Fi
lle

d
S
e
g
m

e
n
ts

A
ct

iv
e

S
e
g
m

e
n
ts ...

...

C
u
rr

e
n
t

S
e
g
m

e
n
ts number of

capabilities

Extending the allocator to multiple object sizes

I Maintain a family of these allocators with
logarithmically-spaced block sizes.

I Nicely fragmentation-resistant

Mark/sweep design

I Heavily borrows from Ueno 2016.

I Conservative: Only reclaim values in filled segments

I Write barrier entries accumulated in capability-local update
remembered set

I Data-race freedom achieved by way of ownership:
I All mark flags owned by collector
I Free segments owned by allocator
I Current segments owned by mutator
I Active segments owned by collector

The lifecycle of a GC

time

Concurrent
Collector

Capability 1

Capability 2

Start of
major GC

Thread 1
Mutator

Evacuate to
non-moving

heap

Evacuate to
non-moving

heap

Thread 2
Mutator

Collect
Snapshot

Enable
write barrier

Thread 1
Mutator

Mark
Thread 1

Stack

Thread 2
Mutator

Mark
Thread 2

Stack

Thread 3
Mutator

Mark
Thread 3

Stack

Final
sync.

Preparatory
Pause

STW Garbage Collection

Garbage Collection by Mutator

Mutator execution

Concurrent marking

Pause

Concurrent
Marking

STW
Marking

Begin
sweep

Concurrent
Sweeping

Thread 3
Mutator

Mark
Thread 3

Stack

Thread 2
Mutator

Mark
Thread 2

Stack

Pre-sweep
Pause

Determining object allocation state

I Recall: the snapshot invariant only requires that we mark
objects which were reachable at t0

I How do we know whether an object was allocated at t0?

mark bit

blocks

block size
next
free

next
free

snapshot

I Record the value of each segment’s next_free field when the
snapshot is taken.

I During collection we can conclude that objects above the
snapshot needn’t be marked.

Determining object allocation state

I Recall: the snapshot invariant only requires that we mark
objects which were reachable at t0

I How do we know whether an object was allocated at t0?

mark bit

blocks

block size
next
free

next
free

snapshot

I Record the value of each segment’s next_free field when the
snapshot is taken.

I During collection we can conclude that objects above the
snapshot needn’t be marked.

Non-moving collection: Preparation Phase
Preparation:

1. Stop the world
2. Evacuate all live data to non-moving haep
3. Collect snapshot
4. Collect root set, push to mark queue
5. Start concurrent mark
6. Resume mutators

Marking:

1. Mark until mark queue is empty
2. Stop the world
3. Request update remembered sets from mutators
4. Mark objects reachable from update remembered set
5. Resume mutators

Sweeping:

1. Sweep unmarked objects

Non-moving collection: Marking

void mark_closure(MarkQueue queue, Closure *p) {
Segment seg = get_segment(p);
Int i = get_block_index(p);

// Is mark flag already set?
if (seg.mark_flag[i])

return;

if (i > seg.next_free_snapshot)
// Either not yet allocated or allocated since
// t_0, no need to mark.
return;

for (Closure *p in p.pointers())
queue.push(p);

seg.set_mark_flag(i);
}

Details abound
I Concurrent, incremental marking of stacks

I Weak pointers

I Large objects

I Handling of cycles

I Constant Applicative Forms

I Selector optimization

I Indirection shortcutting

I Collection scheduling policy

I Various tricks to help mark efficiency
I Incremental handling of arrays
I Closure prefetch

All beyond the scope of this talk but happy to discuss offline.

What the new collector won’t do. . .

Concurrent collection isn’t a silver bullet:

I It probably won’t make your program run faster

I It won’t make your program scale more effectively across cores
(but this may be future work)

I It may reduce your program’s memory footprint, but not by as
much as you might expect

I It is not provide hard realtime latency guarantees

I It does not mow your lawn (yet)

Performance

Preliminary measurements:

I Major GC pause times reduced by factor of between 5 and 50

I Major pauses generally comparable to minor collection pauses

I Mutator throughput generally regresses by around 10%, more
work to be done

What work remains?

I Things currently “mostly work”
I ~20 failing testsuite tests

I Hopefully attain testsuite correctness in the coming weeks

I Characterisation and optimisation follows

I Still some things missing:
I Cost-center profiler support
I Support for compact normal forms
I STM not adequately tested
I Selector optimisation, indirection shortcutting currently disabled
I RTS shutdown is a living nightmare

I Plan to merge for GHC 8.10

Summary

Questions?

time

Concurrent
Collector

Capability 1

Capability 2

Start of
major GC

Thread 1
Mutator

Evacuate to
non-moving

heap

Evacuate to
non-moving

heap

Thread 2
Mutator

Collect
Snapshot

Enable
write barrier

Thread 1
Mutator

Mark
Thread 1

Stack

Thread 2
Mutator

Mark
Thread 2

Stack

Thread 3
Mutator

Mark
Thread 3

Stack

Final
sync.

Preparatory
Pause

STW Garbage Collection

Garbage Collection by Mutator

Mutator execution

Concurrent marking

Pause

Concurrent
Marking

STW
Marking

Begin
sweep

Concurrent
Sweeping

Thread 3
Mutator

Mark
Thread 3

Stack

Thread 2
Mutator

Mark
Thread 2

Stack

Pre-sweep
Pause

Email: ben@well-typed.com

mailto:ben@well-typed.com

Future work

I Teaching mutator to allocate directly into non-moving heap
I Would require changes in code generation

I Further shrink pause times
I Ueno 2016 proposes a collector which allows a concer

synchronization

