A low-latency garbage collector for GHC

Ben Gamari Omer Sinan Agacan

Well-Typed

Another typical day. ..
$ cd my-program
$ cat MyProgram.hs

N e i e T T s T s T e N e o e O e e e N

-#
-#
-#
-#
-#
-#
-#
-#
-#
-#
-#
-#
-#
-#
-#
-#

LANGUAGE
LANGUAGE
LANGUAGE
LANGUAGE
LANGUAGE
LANGUAGE
LANGUAGE
LANGUAGE
LANGUAGE
LANGUAGE
LANGUAGE
LANGUAGE
LANGUAGE
LANGUAGE
LANGUAGE
LANGUAGE

TypeInType #-}
FlexibleInstances #-}
FlexibleContexts #-}
TypeApplications #-}
MagicHash #-}
RankNTypes #-}

GADTs #-}

DataKinds #-}
TypeFamilies #-}
TypeOperators #-}
TypeFamilyDependencies #-}
DependentHaskell #-}
ConstraintKinds #-}
ScopedTypeVariables #-}
PatternSynonyms #-}
MachineCognition #-}

Another typical day. ..

$ ghc -02 -threaded -rtsopts MyProgram.hs
$./MyProgram +RTS -s

10,349,259,832 bytes allocated in the heap
22,353,166,880 bytes copied during GC
4,983,805,744 bytes maximum residency (8 sample(s))
2,066,896 bytes maximum slop
4879 MB total memory in use (0 MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause
Gen O 8983 colls, 0 par 20.001s 0.315s 0.0042s 0.0252s
Gen 1 242 colls, 0 par 30.024s 0.153s 0.0925s 1.3753s

What if this program was. ..

vV v.v. v Y

rendering your cat video?

drawing your text editor's UI?

on the critical path in your distributed application?
driving your car?

controlling your surgical robot?

Why?

GHC (in its simplest configuration) has a

» generational
P two-space moving
» stop-the-world

garbage collector.

Moving garbage collection

Roots

ey

Moving garbage collection

from-space to-space

Moving garbage collection: Evacuate roots

from-space to-space

Moving garbage collection: Evacuate roots

evacuate

from-space

Moving garbage collection: Evacuate roots

from-space

Moving garbage collection: Evacuate roots

‘ Scavenging work list: ’
Al

from-space

Moving garbage collection

‘ Scavenging work list: ’
Al

from-space

Moving garbage collection: Scavenge A

‘ Scavenging work list: ’

- °

from-space

Moving garbage collection: Evacuate B

Scavenging work list: ’

from-space to-space

Moving garbage collection: Evacuate B

Scavenging work list: ’

from-space to-space

Moving garbage collection: Evacuate B

‘ Scavenging work list: ’
B'

from-space

Moving garbage collection

‘ Scavenging work list: ’
B'

from-space

Moving garbage collection: Scavenge B

‘ Scavenging work list: ’
B'

scavenge

from-space

Moving garbage collection: Evacuate C

Scavenging work list:
B' c'

from-space to-space

Moving garbage collection: Evacuate C

Scavenging work list:
B' c'

from-space to-space

Moving garbage collection: Evacuate C

Scavenging work list:
B' c'

from-space to-space

Moving garbage collection: Scavenging B (cont'd)

Scavenging work list: ’

from-space to-space

Moving garbage collection: Evacuate D

Scavenging work list:
c' D'

from-space

Moving garbage collection: Evacuate D

Scavenging work list:
c' D'

from-space

Moving garbage collection: Scavenging C

Scavenging work list:
c' D'

from-space

Moving garbage collection: Scavenging C

Scavenging work list: ’

from-space to-space

Moving garbage collection: Scavenging D

Scavenging work list: ’

from-space

Moving garbage collection: Finished!

Scavenging work list: ’

from-space to-space

Moving garbage collection: Finished!

from-space

Moving garbage collection: Why it's great

Allocation efficiency
Lack of fragmentation
Locality

Simplicity

Ease of parallelism

Cost of collection is O(live data)

Moving garbage collection: Why it's not so great

» Difficulty of incremental collection

» Even collecting a fraction of the heap requires that we must
search the entire heap for references to moved objects

Low-latency collection

Two ways to reduce pause times:
» incremental collection
» Allow suspension of collection to allow mutator to run.
» concurrent collection
» Allow collection to proceed while mutator runs.

We choose the latter.

Incremental moving collection

from-space to-space

Incremental moving collection: Evacuate A

evacuate

from-space to-space

Incremental moving collection: Evacuate B

evacuate

from-space to-space

Incremental moving collection: Suspend collection

from-space to-space

Incremental moving collection: Continue mutation

resume
evaluation h no 1

from-space to-space

Making incremental moving collection safe

» Ensure that mutator never sees a reference into from-space

» One approach:

» Have mutator check each pointer it dereferences (a read barrier)
» Costly?

Non-Stop Haskell (2000)

Exploring the Barrier to Entry - Incremental Generational
Garbage Collection for Haskell

A.M. Cheadle & A.J. Field
Imperial College London
{amc4,ajf}edoc.ic.ac.uk

S. Marlow & S.L. Peyton Jones
Microsoft Research, Cambridge

{simonmmar,simonpj}@microsoft.com

R.L. While
The University of Western Australia, Perth
lyndon@csse.uwa.edu.au

ABSTRACT

We the design and i of a “produc-
tion” incremental garbage collector for GHC 6.2. It builds
on our earlier work (Non-stop Haskell) that exploited GHC'
dynamic dispatch mechanism to hijack object code pointers
so that objects in to-space automatically scavenge them-
selves when the mutator attempts to “enter” them. This
paper details various optimisations based on code speciali-
sation that remove the dynamic space, and associated time,
overheads that accompanied our earlier scheme. We de-
tail important implementation issues and provide a detailed
evaluation of a range of design alternatives in comparison
with Non-stop Haskell and GHC’s current generational col-
lector. We also show how the same code specialisation tech-
niques can be used to climinate the write barrier in a gen-
erational collector.

Eventually, however, the region(s) containing lon
objects (the “older” generation(s)) will fill up and it will be
necessary to perform a so-called major collection.

Major collections are typically expensive operations be-
cause the older generations are usually much larger than
the young one. Furthermore, collecting an old generation
requires the collection of all younger generations so, regard-
less of the actual number of generations, the entire heap
will eventually require collection. Thus, although gener:
tional collection ensures a relatively 1 pause time,
due to the in-

unsuitable for applications that have real-time re-
sponse requirements, for example certain interactive or real-
time control

The traditional way to reduce the variance of the pause
e collection inerementallv:

times is o nerform the o

But: Pointer tagging (2007

Faster laziness using dynamic pointer tagging

Simon Marlow

Microsoft Research Unive

simonmar@microsoft.com

Abstract

Tn the light of evidence that Haskell programs compiled by GHC
exhibit large numbers of mispredicted branches on modern proces-
sors, we re-examine the “tagless™ aspect of the STG-machine that
GHC uses as its evaluation model.

We propose two tagging strategies: a simple strategy called semi-
tagging that seeks to avoid one common source of unpredictable in-
direct jumps, and a more complex strategy called dynamic pointer-
tagging that uses the spare low bits in a pointer to encode informa-
tion about the pointed-to object. Both of these strategies have been
implemented and exhaustively measured in the context of a produc-
tion compiler, (EH(‘ and lhc paper contains detailed des ripliom
of the i

performance improv emems (14% for dynamic pointer-tagging with
only a 2% increase in code size), and we further demonstrate that
much of the improvement can be attributed to the elimination of
mispredicted branch instructions.

As part of our investigations we also discovered that one optimisa-

Alexey Rodriguez Yakushev

ity of Utrecht, The Netherlands
alexey@cs.uu.nl

Simon Peyton Jones
Microsoft Research
simonpj@microsoft.com

continuation to compute a+y, and jumps to the entry code for x.
The first field of every heap closure is its entry code, and jumping
to this code is called entering the closure. The entry code for an
unevaluated closure will evaluate itself and return the value to the
continuation; an already-evaluated closure will return immediately.
This scheme is attractive because the code to evaluate a closure is
simple and uniform: any closure can be evaluated simply by en-
tering it. But this uniformity comes at the expense of performing
indirect jumps, one to enter the closure and another to return to
the evaluation site. These indirect jumps are particularly expensive
on a modern processor architecture, because they fox the branch-
prediction hardware, leading to a stall of 10 or more cycles depend-
ing on the length of the pipeline.

If the closure is unevaluated, then we really do have to take an indi-
rect jump fo its entry code. However, if it happens to be evaluated
already, then a conditional jump might execute much faster. In this
paper we describe a number of approaches that exploit this possibil-
ity. We have implemented these schemes and show that they deliver
substantial performance improvements (10-14%) in GHC, a mature

tion in the STG-machine, ns, is no longer
and we explain why.

1. Introduction

2 compiler for Haskell. Specifically, our contributions are
these:

* We give the first accurate measurements for the dynamic be-
haviour of case expressions in lazy programs, across a range

Pointer tagging by the numbers (2007)

L1 D-cache L2 D-cache
Program accesses misses misses
anna -23.4 -13.3 -28.4
cacheprof -15.9 -5.8 -8.1
constraints -12.8 -4.8 -5.4
fulsom -8.9 -17.2 -53.3
integrate -1.7 2.2 +18.6
mandel -8.4 -1.9 -29.4
simple -11.8 -39 -4.1
sphere -13.0 -19.5 -73.2
typecheck -20.4 -8.5 -30.8
wang -13.4 -2.0 -10.4
(81 more)
Min -31.5 -19.5 -73.2
Max +0.6 +0.5 +81.6
Geometric Mean -13.9 -4.5 -20.1

Figure 12. Cache behaviour for pointer-tagging vs. the baseline

Making incremental moving collection safe

Another approach (Ben-Yitzhak 2002)
» Split heap into n chunks

» Track references between chunks

» Requires cooperation of mutator
» Evacuate/scavenge one chunk at a time
» Scavenge inter-chunk references

» Reduces pause by factor of 1/n

Making incremental moving collection safe

» Moving collection invalidates object references
» Complicates incremental collection

» Perhaps we can avoid it?

Making incremental moving collection safe

» Moving collection invalidates object references
» Complicates incremental collection

» Perhaps we can avoid it?
» Yes, we can.

» But can we get the best of worlds?

Hybrid moving/non-moving collector

Moving Non-moving
Collector Collector

allocates
into

Non-moving
heap

> Mutator allocates into a moving nursery

» Young generation collector evacuates into non-moving heap

» Non-moving heap collected with mark & sweep

» Mark & sweep amenable to both incremental and concurrent
collection

Plan for rest of talk

| will describe our concurrent, moving/non-moving hybrid collector
implemented in GHC.

Plan for rest of talk

| will describe our concurrent, moving/non-moving hybrid collector
implemented in GHC.

Background What is a mark & sweep garbage collector?
Snapshotting How do we safely trace with concurrent mutation?
Allocator How to provide fresh memory for the minor GC?

Collector How to find dead objects and free them?

Status Where are we today?

Mark & Sweep Garbage Collection

Necessary State

Heap A mark flag per object.
Collector A mark queue of references to objects.

Mark & Sweep Garbage Collection

Necessary State

Heap A mark flag per object.
Collector A mark queue of references to objects.

Operations
Mark Push an object’s pointers to the mark queue, set its

mark flag.
Sweep Walk all heap objects, freeing any with un-set mark

flags.

Mark & Sweep Garbage Collection

Mark Queue

Roots

Non-Moving
Heap

Mark & Sweep Garbage Collection: Collect roots

Roots

Mark Queue
A

Non-Moving
Heap

Mark & Sweep Garbage Collection: Marking (A)

Roots

[Mark Queue
B

()
e— .o
._/

Just 1#
@o— 43

Non-Moving
Heap

Mark & Sweep Garbage Collection: Marking (B)

[Mark Queue
B

Roots

Non-Moving
Heap

Mark & Sweep Garbage Collection: Marking (B)

Roots

Non-Moving
Heap

Mark & Sweep Garbage Collection: Marking (C)

Roots

Non-Moving
Heap

Mark & Sweep Garbage Collection: Marking (C)

Roots D

Mark Queue]
B

Non-Moving
Heap

Mark & Sweep Garbage Collection: Marking (C)

Roots D

Mark Queue]
B

Non-Moving
Heap

Mark & Sweep Garbage Collection: Marking (D)

Roots

Mark Queue]
B

Non-Moving
Heap

Mark & Sweep Garbage Collection: Marking (B)

Mark Queue

Roots

Non-Moving
Heap

Mark & Sweep Garbage Collection: Marking

Mark Queue

Non-Moving
Heap

Mark & Sweep Garbage Collection: Sweep

Mark Queue

Non-Moving
Heap

Concurrency: The problem of mutation

While non-moving collection does not invalidate references, this
alone is not sufficient for safe concurrent mutation.

Let's see why. ..

The problem of mutation

Roots B

Mark Queue
A

Non-Moving
Heap

The problem of mutation

Mark Queue

Roots B X

Non-Moving
Heap

The problem of mutation

Mark Queue

Roots X

Non-Moving
Heap

The problem of mutation

Mark Queue

Roots

X

Non-Moving
Heap

The problem of mutation

Mark Queue

Roots

Non-Moving
Heap

The problem of mutation

Mark Queue

Roots

Non-Moving
Heap

The problem of mutation

Roots

Mark Queue]

Non-Moving
Heap

The problem of mutation

Mark Queue

Roots

Non-Moving
Heap

Snapshot-at-the-beginning

Solution:

» Collect with respect to the state of heap at start of mark (time
to).

Snapshot-at-the-beginning

Solution:

» Collect with respect to the state of heap at start of mark (time
to).

Concretely, the collector must ensure this property (henceforth the
snapshot invariant):

The collector must mark all objects reachable at tg.

N.B. it is also safe to mark objects that were dead at t;.

Snapshot-at-the-beginning

The snapshot invariant:
The collector must mark all objects reachable at t;.

Consequently,

1. All objects live at ty will be retained.
2. Many objects dead at ty will be freed.
3. All objects allocated after tp will be retained.

Snapshot-at-the-beginning

The snapshot invariant:
The collector must mark all objects reachable at t;.

Consequently,

1. All objects live at ty will be retained.
2. Many objects dead at ty will be freed.
3. All objects allocated after tp will be retained.

How to accomplish this?

Snapshot-at-the-beginning

The snapshot invariant:
The collector must mark all objects reachable at t;.

Consequently,

1. All objects live at ty will be retained.
2. Many objects dead at ty will be freed.
3. All objects allocated after tp will be retained.

How to accomplish this?

A write barrier.

Maintaining the snapshot invariant

Roots B

Mark Queue
A

Non-Moving
Heap

Maintaining the snapshot invariant

Mark Queue

Roots B X

Non-Moving
Heap

Maintaining the snapshot invariant

Mark Queue

Roots X

Non-Moving
Heap

Maintaining the snapshot invariant

Mark Queue

Roots X

Non-Moving
Heap

Maintaining the snapshot invariant

Mark Queue

Roots X

Non-Moving
Heap

Maintaining the snapshot invariant

Mark Queue

Roots

Non-Moving
Heap

Maintaining the snapshot invariant

Mark Queue

Roots

Non-Moving
Heap

Allocator requirements

vV V. vV v vV VvY

Recall: Non-moving allocator serves nursery collector
Relatively cheap allocation

Fragmentation-resistant

Efficient encoding of mark flags

Snapshot construction must be cheap

Accommodate concurrent collection and allocation

Accommodate parallel collection

Allocator requirements

Recall: Non-moving allocator serves nursery collector
Relatively cheap allocation

Fragmentation-resistant

Efficient encoding of mark flags

Snapshot construction must be cheap

Accommodate concurrent collection and allocation

vV V. vV v vV VvY

Accommodate parallel collection

For simplicity: Let's first consider an allocator for a single object
size.

Allocator structure: The segment

mark bit
blocks

block size

Allocator structure: The segment

mark bit
blocks

f

next
free

Allocator structure: The segment

mark bit
blocks

next
free

Allocator structure: The segment

mark bit
blocks

[l T —

}

next
free

Allocator structure: The segment

mark bit
blocks

next
free

Allocator structure: The segment

mark bit
blocks

next
free

Allocator structure: The segment

P> Note that we did not set the mark bit during allocation

» Each capability has a current segment which serves its
allocations.

Allocator structure: Segment states

Free segment A segment containing no live objects.

Current segment A segment being used by a capability as an
allocation target.

Filled segment A segment having no unallocated blocks.

To-sweep segment A filled segment that will be swept during the
current major GC cycle.

Active segment A segment containing at least one live object.

Allocator structure: Segment lists

2 2 1 ‘
o € cc EA
wGJ o O
2 e Ec | i [femiem
i o =)

Q O o !

n 2 I O B

4

Active
Segments

i Il

Extending the allocator to multiple object sizes

» Maintain a family of these allocators with
logarithmically-spaced block sizes.

» Nicely fragmentation-resistant

Mark /sweep design

» Heavily borrows from Ueno 2016.
» Conservative: Only reclaim values in filled segments

» Write barrier entries accumulated in capability-local update
remembered set

» Data-race freedom achieved by way of ownership:

» All mark flags owned by collector
» Free segments owned by allocator
» Current segments owned by mutator
> Active segments owned by collector

The lifecycle of a GC

Concurrent
Collector

Capability 1

Capability 2

Start of Enable Final Begin
major GC write barrier sync. sweep .
time
[concrrt] o | Concurenc
Marking Marki Sweeping
A A

Evacuate o
nonmoung | [Colect
P rapon

Evacuate to
non-moving
heap

[—
Preparatory
Pause

Pre-sweep
Pause

Il Pause

() STW Garbage Collection

() Garbage Collection by Mutator
(C) Mutator execution

() Concurrent marking

Determining object allocation state

» Recall: the snapshot invariant only requires that we mark
objects which were reachable at ty
> How do we know whether an object was allocated at t;?

Determining object allocation state

» Recall: the snapshot invariant only requires that we mark
objects which were reachable at ty
» How do we know whether an object was allocated at ty?

mark bit
blocks

- A T
block size H
next next
free free
snapshot

» Record the value of each segment’s next_free field when the
snapshot is taken.

» During collection we can conclude that objects above the
snapshot needn't be marked.

Non-moving collection: Preparation Phase

Preparation:

Stop the world

Evacuate all live data to non-moving haep
Collect snapshot

Collect root set, push to mark queue
Start concurrent mark

Resume mutators

R e

Marking:

1. Mark until mark queue is empty

Stop the world

Request update remembered sets from mutators
Mark objects reachable from update remembered set
Resume mutators

O wnN

Sweeping:

1. Sweep unmarked objects

Non-moving collection: Marking

void mark_closure(MarkQueue queue, Closure *p) {
Segment seg = get_segment(p);
Int i = get_block_index(p);

// Is mark flag already set?
if (seg.mark_flagl[i])
return;

if (i > seg.next_free_snapshot)
// Either not yet allocated or allocated since
// t_0, no need to mark.
return;

for (Closure *p in p.pointers())
queue.push(p);

seg.set_mark flag(i);

Details abound

v

Concurrent, incremental marking of stacks
Weak pointers

Large objects

Handling of cycles

Constant Applicative Forms

Selector optimization

Indirection shortcutting

Collection scheduling policy

vV vV v vV V. vV VY

Various tricks to help mark efficiency

» Incremental handling of arrays
» Closure prefetch

All beyond the scope of this talk but happy to discuss offline.

What the new collector won't do. ..

Concurrent collection isn't a silver bullet:
» It probably won't make your program run faster

> It won’t make your program scale more effectively across cores
(but this may be future work)

» It may reduce your program’'s memory footprint, but not by as
much as you might expect

P It is not provide hard realtime latency guarantees

» It does not mow your lawn (yet)

Performance

Preliminary measurements:
» Major GC pause times reduced by factor of between 5 and 50
» Major pauses generally comparable to minor collection pauses

» Mutator throughput generally regresses by around 10%, more
work to be done

What work remains?

» Things currently “mostly work”
» ~20 failing testsuite tests
» Hopefully attain testsuite correctness in the coming weeks
» Characterisation and optimisation follows
» Still some things missing:

» Cost-center profiler support

» Support for compact normal forms

» STM not adequately tested

» Selector optimisation, indirection shortcutting currently disabled
» RTS shutdown is a living nightmare

» Plan to merge for GHC 8.10

Summary

Questions?

Start of Enable Final Begin
major GC write barrier sync. sweep

time

Concurrent e Concurrent] sTw r Concurrent
Collector L Marking i | | Sweeping

. Evacuate to Mark Mark
Capability 1 1 e Collect et Thread 3 el Thread 3
r o Snapshot ek Mutator =5 Mutator

- Evacuste to Mark wark
Capability 2 =) ";:kz mz
I I
[— ———
Preparatory Pre-sweep
Pause Pause
Il Pause

() STW Garbage Collection

() Garbage Collection by Mutator
(C) Mutator execution

(C) Concurrent marking

Email: ben@well-typed.com

mailto:ben@well-typed.com

Future work

P Teaching mutator to allocate directly into non-moving heap
» Would require changes in code generation
» Further shrink pause times
» Ueno 2016 proposes a collector which allows a concer
synchronization

