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Very well-behaved lenses do not describe a (virtual) field of a record as we might intuitively think.
Updating a structure through a lens can cause changes in the other parts of the structure in a larger
extent than what is visible through the getter part. That is evident by considering homotopic descrip-
tions of lenses which also suggests that the setter part is the defining part of the lens. On the other
hand prisms can be seen as “generalized constructors”. Builder and matcher uniquely define each
other.

1 Introduction

A very well-behaved lens [4] from a structure type S to a value type V is usually specified using two
functions, a getter f : S→ V and a setter g : S→ V → S. These functions are required to satisfy three
laws:

GetPut f g := ∏
s:S

∏
v:V

f (g s v) = b PutGet f g := ∏
s:S

g s ( f s) = s

PutPut g := ∏
s:S

∏
v v′:B

g (g s v′) v = g s v

The type of lens is then

Lens S V := ∑
( f ,g):(S→V )×(S→V→S)

GetPut f g×PutGet f g×PutPut g

This formulation is problematic if we want to talk about the equality of lenses, for example to prove the
associativity of lens composition. We need to show that law evidences are also equal which may not
be easy as we do not have uniqueness of identity proofs because it is not consistent with univalence.
Compare that with the definitions of isomorphism and equivalence in homotopy type theory. We will
introduce the concepts needed in Appendix A using the standard reference for homotopy type theory:
the “HoTT Book“ [5].

Paolo Capriotti proposes the following definition for higher lens [1].

Definition 1.1. A higher lens is a dependent triple

HigherLens S V := ∑
f :S→V

∑
P:‖V‖→Type

∏
v:V

(fiber f v' P |v|).

where fiber f b := ∑a:A( f a = b) (Definition A.4).
This formulation is equivalent to to an equivalence-lens definition [3]:

ELens S V := ∑
R:Type

(S' (V ×R))× (R→‖V‖).
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However, these definitions are not easy to work with. The restricting types are not mere propositions as
isEquiv (Definition A.5) in case of equivalence. More concretely, the f in the HigherLens definition does
not determine the lens completely. There is non-unique computational content for a setter “hidden” in
the fiber equivalence. It is wrong to only say “ f is a lens” without mentioning how the setter is defined.

We can illustrate this by a small example. See Appendix B for an analogous real-world example.

f :: (Bool,Bool)→ Bool
f = fst

g :: (Bool,Bool)→ Bool→ (Bool,Bool)
g (x,r) y = (y,xor y (xor r x))

It would be highly misleading to call the lens formed from f and g by the getter: fst.
The corresponding higher lens has f = fst and Px = Bool as the first and second fields of a triple.

The third field, a dependent function ∏v:Bool fiberfst v ' Bool, determines the behaviour of the setter.
In fact there are two values which produce the same behaviour, assigning id and not equivalences to
different values of v. This means that can construct two observably different higher lenses which getters
and setters are equal to f and g. This suggests that HigherLens is “bigger” than Lens (when S and V are
h-sets).

The above invites one to look into the homotopic representations of lenses more closely.

2 Prisms

Before investigating lenses we look at prisms. Their theory turns out to be quite simple. Prisms are to
coproducts what lenses are to products. A Prism S V is usually specified using two functions, a builder
g : V → S and a matcher f : S→ Maybe V . Prisms can also be defined by requiring that the builder
function is a decidable embedding i.e. a function whose fibers are decidable propositions.

Definition 2.1. A function f : A→ B is an embedding if for every a : A its fibers are mere propositions:

hasPropFibers f := ∏
a:A

isProp (fiber f b).

Definition 2.2. A type P is decidable if P or ¬P:

DecP = P+¬P

Definition 2.3. A function g : V → S is a prism when a proof of isPrism g can be constructed

isPrism g := hasPropFibers g×∏
s:S

Dec(fiberg s)

Prism S V := ∑
g:V→S

isPrism g

.

isPrism is a mere proposition because the product of propositions is one, hasPropFibers is a mere
proposition and Dec P is a mere proposition if P is. As a corollary, it is easy to show that composition of
prisms is associative.

Contrary to the lens case, saying “a function g is a prism” is justified. The matching function is
uniquely defined. To match on a value use the ∏s:S Dec(fiberg s) part. You will either get a fiber which
contains a value of type V , or a proof that there cannot be one.
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3 Lenses

We will try to understand lenses by considering fibers of a getter. We start with a barely behaving lens
which satisfies GetPut law. It can be further strengthened in few ways by imposing addition restrictions
on the fiber mapping.
• If we require the mapping to be an equivalence, we do not get a previously known variant of lenses.

We call such lenses weak.

• If we require the mapping to not change the fiber when v1 = v2, we get a well-behaved lens which
also satisfies the PutGet law.

• The HigherLens (Definition 1.1) can be thought as requiring the mapping to go through a single
(or more correctly: coherently constant) type P |v|.

Definition 3.1. A function f : S→ V is a barely behaving lens if it comes together with a value of
following type:

hasBareLens f := ∏
v1:v

∏
v2:V

(fiber f v1→ fiber f v2)

Definition 3.2. A function f : S→V is a weak lens if it comes together with a value of following type:

hasWeakLens f := ∏
v1:V

∏
v2:V

(fiber f v1 ' fiber f v2)

Definition 3.3. A function f : S→ V is a well-behaving lens (the name is due to [4]) if it is a barely
behaving lens with a proof p : hasBareLens f and additionally the following type is inhabited:

∏
v:V

∏
x:fiber f b

p v v x = x

While the definitions above might be useful in various applications, none of them definitions is a
mere proposition. There does not seem to be a simple way to strenghten HigherLens further.

For prisms we have found an elegant approach of building on top of a known concept: an embedding.
We can try whether related surjection can be used to characterize lens. It is surprising at first that none of
the lens representations allow to show that the getter is a surjection. We end up needing an assumption
like ‖S+¬S‖ which is not a huge requirement, but a requirement nevertheless.

On the other hand, the setter part when thought as a function S×V → S can be shown to be a
surjection when the PutGet law holds, i.e. for well-behaved lenses and stronger variants. Alternatively
we take the setter to be the primary building block of lenses:
Definition 3.4. A function g : S→V → S has getter when

hasGetter g := ∏
s:S

isContr (fibergs s)

hasGetter is a mere proposition, and lets us show the PutGet law. Interestingly to show the GetPut
law we need a simpler variant of the PutPut law, essentially asking that the setter is idempotent:
Definition 3.5.

idempotentSetter g := ∏
s:S

∏
v:V

g (g s v) v = g s v

The above suggests that the setter is the defining part of a lens. The compatible getter is uniquely
determined. Yet, we do not yet know what a “higher setter“ would look like. That is a topic for further
work.
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A Homotopy Type Theory overview

As we mentioned in the introduction, the “HoTT Book“ [5] is the standard reference for homotopy type
theory. The functional programming language AGDA has been recently extended into CUBICAL AGDA

[6], giving computation interpretation to the homotopy type theory. The statements in this paper are
translated from CUBICAL AGDA code.

Homotopy type theory is based on a dependent type theory with

• dependent function types (a 7→ . . .) : ∏a:A B(a);

• dependent pair types 〈a;b〉 : Σa:AB(a) (we name projections fst and snd);

• universe types we call just Type as we omit level issues for brevity,

• non-dependent product types 〈a;b〉 : A×B (with projections named proj1 and proj2);

• empty type ⊥, and negation ¬A := A→⊥;

• coproduct types A+B; with constructors inl and inr1;

• Booleans true : Bool; false : Bool

• . . .

Definition A.1 (Identity types). There is a type family of identity types IdA : A→ A→ Type. It is also
called the path space of A. We use a standard notation a =A b or just a = b to denote that two elements
of the same type a,b : A are equal. The introduction rule is a dependent function

refl : ∏
a:A

(a =A a).

Definition A.2 (Homotopy levels). Types can be classified according to their homotopy-level. Homotopy
levels are cumulative.

1in AGDA code the A]B is used to avoid clash with addition on natural numbers
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• A type is contractible when it has an element to which all others elements are equal

isContr A := ∑
x:A

∏
y:A

(x = y).

• A type is mere proposition when all its elements are equal:

isProp A := ∏
x y:A

(x = y)

Mere propositions values a proof irrelevant: they are all equal if they exist. However, not as types
COQ in Prop universe, values of mere proposition types can be eliminated into non-proposition
types too. isContr A and isProp A are itself mere propositions.

• A type is h-set when its path space is mere proposition.

isSet A := ∏
x y:A

isProp (x = y)

For h-sets the uniqueness of identity proofs holds.
Definition A.3. It is possible to truncate any type to be a mere proposition, using propositional truncation

|a| : ‖A‖

The downside of using propositional truncation is that values of type ‖A‖ can be eliminated only
with mere proposition motives.
Definition A.4. A fiber of a map f : A→ B is the type of its pre-image values:

fiber f b := ∑
a:A

( f a = b)

Definition A.5. A function f : A→ B is an equivalence if all its fibers are contractible:

isEquiv f := ∏
b:B

isContr (fiber f b)

isEquiv f is a mere proposition which implies that there is the unique inverse function:

f−1 isEquiv-f b := fst (isEquiv-f b).

Using isEquiv we define equivalence of types as:

A' B := ∑
f :A→B

isEquiv f

Theorem A.6. Using the just defined equivalence we can state the univalence axiom:

univalence := (A' B)' (A = B)

Though we call it an axiom, in cubical type theories like in CUBICAL AGDA it does compute. We
will not use the axiom directly, but it is nevertheless important to mention. For an example note that
Bool = Bool type is not contractible, there are also other values than refl.
Theorem A.7. Given a type A and a type family B : A→ Type, consider the dependent functions f ,g :
∏a:A B a. The following functional extensionality equivalence is a theorem in homotopy type theory:

funExt := ( f = g)'∏
a:A

( f a =B a g a).
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B Encrypt-decrypt example

This example will be written in HASKELL. Let us develop a stream cipher implementation. We will
represent encryption keys by an initial state of the random number generator.

newtype Key = Key (Maybe Gen)

The generator is wrapped in Maybe, because we want to represent a special zero key:

zeroKey :: Key
zeroKey = Key Nothing

The behavior is best explained by the encryption code. We have a function to generate random Word8
(8-byte unsigned integer) from a Maybe Gen:

nextW8 :: Maybe Gen→ (Word8,Maybe Gen)
nextW8 Nothing = (0,Nothing)
nextW8 (Just g) = ...

where the Just branch uses the RNG g. Using nextW8; we can encrypt a plain text message:

encrypt :: Key→ [Word8 ]→ [Word8 ]
encrypt [ ] = [ ]
encrypt (Key g) (x : xs) = xor w x : encrypt (Key g′) xs where (w,g′) = nextW8 g

Because of the properties of xor we can use the same function to decrypt cipher text, in other words:
decrypt = encrypt. Next let us a define a data structure which carries a key with a cipher text encrypted
with that key.

data Bundled = Bundle Key [Word8 ]

We can bundle a plain text with the zeroKey:

plain :: [Word8 ]→ Bundled
plain = Bundle zeroKey

Now the key part. We construct the key lens using a lens constructor which takes getter and setter
functions. When setting a new key, we first decrypt the cipher text with an old key and then re-encrypt
with the new one:

key :: Lens Bundled Key
key = lens

(λ (Bundle k ) → k)
(λ (Bundle k x) k′→ Bundle k′ (encrypt k′ (decrypt k x)))

And let us also have an ordinary projection lens for the cipher text part:

ciphertext :: Lens Bundled [Word8 ]
ciphertext = lens
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(λ (Bundle x) → x)
(λ (Bundle k ) x→ Bundle k x)

If we not take msg = [108,101,110,115 ] (which stands for "lens" in Latin1 encoding); then we can
encrypt it using lens primitives as:

secret = view ciphertext (set key anotherKey (plain msg))

secret could then be e.g. [113,107,89,46 ] standing for "qkY.". But we can also decrypt that message
using the same procedure!

msg′ = view ciphertext (set key zeroKey (Bundle anotherKey secret))

The result msg′ will be equal to the original msg!
Both lenses used here – key and ciphertext – are lawful, one can verify that using e.g. QUICKCHECK

library [2], It will not find any counterexamples. We think this is a cool example usage of lens but it feels
morally wrong.
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