Lazy Evaluation

ZuriHac 2023
Andres Löh
2023-06-11 — Copyright © 2023 Well-Typed LLP

PWell-Typed
 The Haskell Consultants

About Well-Typed

- Well-Typed is a Haskell consultancy company, established in 2008
- Team of about 20 Haskell experts
- Wide variety of clients
- GHC and tooling maintenance, development and support
- Haskell software development and consulting
- On-site and remote training courses

GHC support and maintenance

https://well-typed.com/blog/2022/11/funding-ghc-maintenance/

About me

- Using Haskell since about 1997
- Studied mathematics in Konstanz, PhD in Computer Science at Utrecht 2004
- At Well-Typed since 2010
- Living in Regensburg, Germany

Haskell Interlude

https://haskell.foundation/podcast/

Haskell Unfolder

The Haskell Unfolder
 -well-Typed

https://www.youtube.com/@well-typed
Next episode on Wednesday, 14 June, on a topic related to this talk!

Repository

This presentation and the code samples are available from https://github.com/well-typed/lazy-evaluation-zurihac-2023

The plan

- Look at lazy evaluation and try to reason about simple programs.
- Build an intuition for lazy evaluation.
- Discuss some common pitfalls.

The plan

- Look at lazy evaluation and try to reason about simple programs.
- Build an intuition for lazy evaluation.
- Discuss some common pitfalls.

Not:

- Complete in any sense.
- Dive deep into GHC-specific optimisations.
- Learn how to track down space leaks in large code bases.

Informal introduction

Lazy evaluation

What is lazy evaluation?

Pwell-Typed

Lazy evaluation

What is lazy evaluation?

- evaluate as little as possible, just when needed, and ...

Lazy evaluation

What is lazy evaluation?

- evaluate as little as possible, just when needed, and ...
- share computation results if they are needed multiple times.

Lazy evaluation

What is lazy evaluation?

- evaluate as little as possible, just when needed, and ...
- share computation results if they are needed multiple times.

What is a space leak?

Lazy evaluation

What is lazy evaluation?

- evaluate as little as possible, just when needed, and ...
- share computation results if they are needed multiple times.

What is a space leak?

A situation where memory is retained by the program unexpectedly long.

Lazy evaluation

Why do we evaluate anything at all?

Lazy evaluation

Why do we evaluate anything at all?

- Some result we are interested in creates demand on other results.
- Demand is propagated through functions and language constructs such as case (or more generally pattern matching).

Lazy evaluation

Why do we evaluate anything at all?

- Some result we are interested in creates demand on other results.
- Demand is propagated through functions and language constructs such as case (or more generally pattern matching).

We will try to make these points more precise throughout the lecture.

Example 1: null

A first example

```
example1 :: Int -> Bool example1 \(\mathrm{n}=\) null [0 .. n]
```

How much space does this use (in terms of n)?

Looking at definitions

Let's start with our own definitions.
null :: [a] -> Bool
null [] = True
null (_ : _) = False

Looking at definitions

Let's start with our own definitions.

```
null :: [a] -> Bool
null [] = True
null (_ : _) = False
```

enumFromTo :: Int -> Int -> [Int]
enumFromTo $1 \mathrm{u}=$
if $1>u$
then []
else l : enumFromTo $(1+1) u$

In Haskell, [m . . n] is syntactic sugar for enumFromTo m n .

Equational reasoning

Let's assume $\mathrm{n}=2$:
null (enumFromTo 0 2)

PWell-Typed

Equational reasoning

Let's assume $\mathrm{n}=2$:
null enumFromTo 0 2d

Equational reasoning

Let's assume $\mathrm{n}=2$:
$\begin{aligned} & \text { null (enumFromTo } 02 \text {) } \\ = & \text { null (if } 0>2 \text { then [] else } 0 \text { : enumFromTo }(0+1) 2 \text {) }\end{aligned}$

Pwell-Typed

Equational reasoning

Let's assume $\mathrm{n}=2$:
$\begin{aligned} & \text { null (enumFromTo } 02 \text {) } \\ = & \text { null (if } 0>2 \text { then [] else } 0 \text { : enumFromTo }(0+1) 2 \text {) }\end{aligned}$

Pwell-Typed

Equational reasoning

Let's assume $\mathrm{n}=2$:

```
    null (enumFromTo 0 2)
= null (if 0 > 2 then [] else 0 : enumFromTo (0 + 1) 2)
= null (if False then [] else 0 : enumFromTo (0 + 1) 2)
```


Equational reasoning

Let's assume $\mathrm{n}=2$:

```
    null (enumFromTo 0 2)
= null (if 0 > 2 then [] else 0 : enumFromTo (0 + 1) 2)
= null if False then[] else 0 : enumFromTo (0 + 1) 2b
```


Equational reasoning

Let's assume $\mathrm{n}=2$:

```
    null (enumFromTo 0 2)
= null (if 0>2 then [] else 0 : enumFromTo (0 + 1) 2)
= null (if False then [] else 0 : enumFromTo (0 + 1) 2)
= null (0 : enumFromTo (0 + 1) 2)
```


Equational reasoning

Let's assume $\mathrm{n}=2$:
null (enumFromTo 0 2)
$=$ null (if $0>2$ then [] else 0 : enumFromTo ($0+1$) 2)
$=$ null (if False then [] else 0 : enumFromTo ($0+1$) 2)
$=$ null (0 : enumFromTo (0 + 1) 2)

Equational reasoning

Let's assume $\mathrm{n}=2$:

```
    null (enumFromTo 0 2)
= null (if 0>2 then [] else 0 : enumFromTo (0 + 1) 2)
= null (if False then [] else 0 : enumFromTo (0 + 1) 2)
= null (0 : enumFromTo (0 + 1) 2)
= False
```


Equational reasoning

Let's assume $\mathrm{n}=2$:

```
    null (enumFromTo 0 2)
    = null (if 0>2 then [] else 0 : enumFromTo (0 + 1) 2)
    = null (if False then [] else 0 : enumFromTo (0 + 1) 2)
    = null (0 : enumFromTo (0 + 1) 2)
    = False
```

Reduction sequence does not depend on n , only on $0>n$ being False.

Equational reasoning

Let's assume $\mathrm{n}=2$:

```
    null (enumFromTo 0 2)
    = null (if 0>2 then [] else 0 : enumFromTo (0 + 1) 2)
    = null (if False then [] else 0 : enumFromTo (0 + 1) 2)
    = null (0 : enumFromTo (0 + 1) 2)
    = False
```

Reduction sequence does not depend on n , only on $0>n$ being False.

Answer to our original question is constant space (and time).

Redexes

null (0 : enumFromTo (0 + 1) 2)

PWell-Typed

Redexes

null (0 : enumFromTo (0 + 1) 2)

Pwell-Typed

Redexes

null (0 : enumFromTo (0 + 1) 2

Pwell-Typed

Redexes

null (0 : enumFromTo (0 + 1) 2)

AWell-Typed

Redexes

null (0 : enumFromTo (0 + 1) 2)

We generally have more than one redex (reducible expression).
One aspect of lazy evaluation is that we are generally choosing the outermost redex.

Lightweight measuring

- Write the program.
- Run with different inputs (for n) and observe memory consumption.
- Use GHC RTS flags to get helpful info about memory use.

Demand?

Why does anything happen at all?

Pwell-Typed

Demand?

Why does anything happen at all?

- We want to print the resulting Bool .

Demand?

Why does anything happen at all?

- We want to print the resulting Bool .
- In order to print it, we have to know it.

Demand?

Why does anything happen at all?

- We want to print the resulting Bool .
- In order to print it, we have to know it.
- So we have to evaluate the call to null .

Demand?

Why does anything happen at all?

- We want to print the resulting Bool .
- In order to print it, we have to know it.
- So we have to evaluate the call to null .
- Why can't we reduce null (enumFromTo 0 2) directly?

Pattern matching

```
null :: [a] -> Bool
null [] = True
null (_ : _) = False
```

The pattern match on the input drives evaluation, i.e., it propagates demand.

Just enough evaluation

As can be observed by the reduction

```
    null (0 : enumFromTo (0 + 1) 2)
    = False
```

revealing the top-level constructor is sufficient to reduce null .

Just enough evaluation

As can be observed by the reduction

```
    null (0 : enumFromTo (0 + 1) 2)
    = False
```

revealing the top-level constructor is sufficient to reduce null .

An expression is in weak head-normal form (WHNF) if it is a constructor application (or a lambda).

Just enough evaluation

As can be observed by the reduction

```
    null (0 : enumFromTo (0 + 1) 2)
    = False
```

revealing the top-level constructor is sufficient to reduce null .

An expression is in weak head-normal form (WHNF) if it is a constructor application (or a lambda).

Intuitively, if any evaluation is needed at all, then evaluating up to weak head-normal form is the least amount of evaluation that can enable new reduction opportunities.

How much evaluation?

```
So what about each of the following?
null (repeat 1)
null undefined
null (1 : undefined)
null (undefined : undefined)
null (let \(x=x\) in \(x\) )
```


Aside: strict functions

A function f is called strict if and only if $\mathrm{f} \perp=\perp$.
(Here, \perp is a special value that subsumes anything that crashes or loops, e.g. undefined .)

Aside: strict functions

A function f is called strict if and only if $f \perp=\perp$.
(Here, \perp is a special value that subsumes anything that crashes or loops, e.g. undefined .)

Good:

Strictness is defined in terms of a function's behaviour, not its implementation.

Aside: strict functions

A function f is called strict if and only if $f \perp=\perp$.
(Here, \perp is a special value that subsumes anything that crashes or loops, e.g. undefined .)

Good:

Strictness is defined in terms of a function's behaviour, not its implementation.

Not so good:

Some implications of the definition might be unintuitive.
The notion is not very precise, because there are "various degrees of strictness".

Examples

Is null strict?

AWell-Typed

Examples

Is null strict?

Yes!
GHCi> null undefined
*** Exception: Prelude.undefined

Examples

What is an example of a non-strict function?

AWell-Typed

Examples

What is an example of a non-strict function?

$$
\begin{aligned}
& \text { constZero :: a -> Int } \\
& \text { constZero _ = 0 }
\end{aligned}
$$

Examples

What is an example of a non-strict function?

```
constZero :: a -> Int
constZero _ = 0
```

GHCi> constZero undefined 0

Identity

$$
\begin{aligned}
& \text { id }:: \text { a -> a } \\
& \text { id } x=x
\end{aligned}
$$

Is id strict?

AWell-Typed

Identity

```
id :: a -> a
id x = x
Is id strict?
Yes!
GHCi> id undefined
*** Exception: Prelude.undefined
```


Identity

```
id :: a -> a
id x = x
Is id strict?
Yes!
GHCi> id undefined
*** Exception: Prelude.undefined
```

Note that id propagates demand on the result to demand on its argument.

Another corner case

$$
\begin{aligned}
& \text { constError :: a -> b } \\
& \text { constError _ = undefined }
\end{aligned}
$$

This function is also strict.

Example 2: null via equality

Changed definition of null

```
nullViaEq xs = xs == []
example2 :: Int -> Bool
example2 n = nullViaEq [0 . n]
```

Does this change anything?

Definition of equality on lists

$$
\begin{array}{rlrl}
\text { instance Eq } & \text { a }=>\text { Eq [a] where } \\
{[1]} & ==[] & =\text { True } \\
\begin{array}{rlrl}
{[x: x s)} & ==(y: y s) & =x==y ~ \& \& x s==y s \\
(x s & = & = & y s
\end{array} & =\text { False }
\end{array}
$$

Equational reasoning

nullViaEq (enumFromTo 0 2)

Pwell-Typed

Equational reasoning

nullViaEq (enumFromTo 0 2)

Pwell-Typed

Equational reasoning

nullViaEq (enumFromTo 0 2)

= enumFromTo 02 == []

Equational reasoning

$$
\begin{aligned}
& \text { nullViaEq (enumFromTo } 02 \text {) } \\
= & \text { enumFromTo } 02=[]
\end{aligned}
$$

Equational reasoning

nullViaEq (enumFromTo 0 2)

= enumFromTo 02 == []
$=($ if $0>2$ then [] else 0 : enumFromTo (0 + 1) 2) $==$ []

Equational reasoning

nullViaEq (enumFromTo 0 2)
= enumFromTo 02 == []
$=($ if $0>2$ then [] else 0 : enumFromTo $(0+1) 2)==[]$

Equational reasoning

nullViaEq (enumFromTo 0 2)

= enumFromTo 02 == []
$=($ if $0>2$ then [] else 0 : enumFromTo (0 + 1) 2) $==$ []
$=($ if False then [] else 0 : enumFromTo (0 + 1) 2) $==$ []

Equational reasoning

nullViaEq (enumFromTo 0 2)

= enumFromTo 02 == []
$=($ if $0>2$ then [] else 0 : enumFromTo (0 + 1) 2) $==$ []
$=$ if False then [] else 0 : enumFromTo $(0+1) 2$) $=$ []

Equational reasoning

nullViaEq (enumFromTo 0 2)

= enumFromTo 02 == []
$=($ if $0>2$ then [] else 0 : enumFromTo ($0+1$) 2) $==$ []
$=($ if False then [] else 0 : enumFromTo $(0+1) 2)==[]$
$=(0$: enumFromTo $(0+1) 2)==[]$

Equational reasoning

nullViaEq (enumFromTo 0 2)

= enumFromTo 02 == []
$=($ if $0>2$ then [] else 0 : enumFromTo (0 + 1) 2) $==$ []
$=($ if False then [] else 0 : enumFromTo $(0+1) 2)==[]$
$=(0$: enumFromTo $(0+1) 2)==[]$

Equational reasoning

nullViaEq (enumFromTo 0 2)

= enumFromTo 02 == []
$=($ if $0>2$ then [] else 0 : enumFromTo ($0+1$) 2) $==$ []
$=($ if False then [] else 0 : enumFromTo (0 + 1) 2) $==$ []
$=(0$: enumFromTo $(0+1) 2)==[]$
$=$ False

Equational reasoning

nullViaEq (enumFromTo 0 2)

= enumFromTo 02 == []
$=($ if $0>2$ then [] else 0 : enumFromTo (0 + 1) 2) $==$ []
$=($ if False then [] else 0 : enumFromTo $(0+1) 2)==[]$
$=(0$: enumFromTo $(0+1) 2)==[]$
$=$ False

Reduction steps change, but still independent of n.
Still constant space (and time).

Aside: which definition is better?

Which of the two definitions of null is better?

Aside: which definition is better?

Which of the two definitions of null is better?

The function nullViaEq has an unecessarily restrictive type:
nullViaEq :: Eq a => [a] -> Bool

Example 3: self equality

Comparing a list to itself

$$
\begin{aligned}
& \text { selfEqual : : Eq a => a -> Bool } \\
& \text { selfEqual } x=x==x \\
& \text { example3 : : Int -> Bool } \\
& \text { example3 } n=\text { selfEqual [0 .. n] }
\end{aligned}
$$

We are once again interested in the space behaviour.

Equational reasoning

This is where sharing comes into play:
selfEqual (enumFromTo 0 2)

Equational reasoning

This is where sharing comes into play:
selfEqual (enumFromTo 0 2)

Equational reasoning

This is where sharing comes into play:

$$
\begin{aligned}
& \text { selfEqual (enumFromTo } 02 \text {) } \\
= & \text { let } x=\text { enumFromTo } 02 \text { in } x==x
\end{aligned}
$$

Equational reasoning

This is where sharing comes into play: selfEqual (enumFromTo 0 2)
= let $\mathrm{x}=$ enumFromTo 02 in $\mathrm{x}=\mathrm{x}$

Equational reasoning

This is where sharing comes into play: selfEqual (enumFromTo 0 2)
$=$ let $\mathrm{x}=$ enumFromTo 02 in $\mathrm{x}==\mathrm{x}$
$=$ let $\mathrm{x}=0$: enumFromTo ($0+1$) 2 in $\mathrm{x}==\mathrm{x}$

Equational reasoning

This is where sharing comes into play:

$$
\begin{aligned}
& \text { selfEqual (enumFromTo } 02) \\
= & \text { let } x=\text { enumFromTo } 02 \text { in } x==x \\
= & \text { let } x=0: \text { enumFromTo }(0+1) 2 \text { in } x==x \\
= & \text { let } x=0: x^{\prime} ; x^{\prime}=\text { enumFromTo }(0+1) 2 \text { in } x==x
\end{aligned}
$$

Equational reasoning

This is where sharing comes into play:

$$
\begin{aligned}
& \text { selfEqual (enumFromTo } 02 \text {) } \\
= & \text { let } x=\text { enumFromTo } 02 \text { in } x==x \\
= & \text { let } x=0: \text { enumFromTo }(0+1) 2 \text { in } x==x \\
= & \text { let } x=0: x^{\prime} ; x^{\prime}=\text { enumFromTo }(0+1) 2 \text { in } X==x
\end{aligned}
$$

Equational reasoning

This is where sharing comes into play:

$$
\begin{aligned}
& \text { selfEqual (enumFromTo } 02 \text {) } \\
= & \text { let } x=\text { enumFromTo } 02 \text { in } x==x \\
= & \text { let } x=0: \text { enumFromTo }(0+1) 2 \text { in } x==x \\
= & \text { let } x=0: x^{\prime} ; x^{\prime}=\text { enumFromTo }(0+1) 2 \text { in } x==x \\
= & \text { let } x=0: x^{\prime} ; x^{\prime}=\text { enumFromTo }(0+1) 2 \\
& \text { in } 0=0 \& \& x^{\prime}==x^{\prime}
\end{aligned}
$$

Equational reasoning

This is where sharing comes into play:

$$
\begin{aligned}
& \text { selfEqual (enumFromTo } 02) \\
= & \text { let } x=\text { enumFromTo } 02 \text { in } x==x \\
= & \text { let } x=0: \text { enumFromTo }(0+1) 2 \text { in } x==x \\
= & \text { let } x=0: x^{\prime} ; x^{\prime}=\text { enumFromTo }(0+1) 2 \text { in } x==x \\
= & \text { let } x=0: x^{\prime} ; x^{\prime}=\text { enumFromTo }(0+1) 2 \\
& \text { in } 0=0 \& \& x^{\prime}==x^{\prime} \\
= & \text { let } x^{\prime}=\text { enumFromTo }(0+1) 2 \text { in } 0=0 \& \& x^{\prime}==x^{\prime}
\end{aligned}
$$

Equational reasoning

This is where sharing comes into play:

$$
\begin{aligned}
& \text { selfEqual (enumFromTo } 02) \\
= & \text { let } x=\text { enumFromTo } 02 \text { in } x==x \\
= & \text { let } x=0: \text { enumFromTo }(0+1) 2 \text { in } x==x \\
= & \text { let } x=0: x^{\prime} ; x^{\prime}=\text { enumFromTo }(0+1) 2 \text { in } x==x \\
= & \text { let } x=0: x^{\prime} ; x^{\prime}=\text { enumFromTo }(0+1) 2 \\
& \text { in } 0=0 \& \& x^{\prime}==x^{\prime} \\
= & \text { let } x^{\prime}=\text { enumFromTo }(0+1) 2 \text { in } 0==0 \& \& x^{\prime}==x^{\prime}
\end{aligned}
$$

Equational reasoning

This is where sharing comes into play: selfEqual (enumFromTo 0 2)
$=$ let $\mathrm{x}=$ enumFromTo 02 in $\mathrm{x}==\mathrm{x}$
$=$ let $x=0$: enumFromTo ($0+1$) 2 in $x==x$
$=$ let $x=0: x^{\prime} ; x^{\prime}=$ enumFromTo ($0+1$) 2 in $x==x$
$=$ let $\mathrm{x}=0: \mathrm{x}^{\prime} ; \mathrm{x}^{\prime}=$ enumFromTo (0 + 1) 2 in $0==0$ \&\& $x^{\prime}=x^{\prime}$
$=$ let $x^{\prime}=$ enumFromTo (0 + 1) 2 in $0==0$ \&\& $x^{\prime}==x^{\prime}$
$=$ let $x^{\prime}=$ enumFromTo $(0+1) 2$ in True \&\& $x^{\prime}==x^{\prime}$

Equational reasoning

This is where sharing comes into play: selfEqual (enumFromTo 0 2)
$=$ let $x=$ enumFromTo 02 in $x==x$
$=$ let $x=0$: enumFromTo $(0+1) 2$ in $x==x$
$=$ let $x=0: x^{\prime} ; x^{\prime}=$ enumFromTo $(0+1) 2$ in $x==x$
$=\operatorname{let} x=0: x^{\prime} ; x^{\prime}=$ enumFromTo $(0+1) 2$ in $0==0 \& \& x^{\prime}==x^{\prime}$
$=$ let $x^{\prime}=$ enumFromTo $(0+1) 2$ in $0==0 \& \& x^{\prime}==x^{\prime}$
$=$ let $x^{\prime}=$ enumFromTo $(0+1) 2$ in True \&\& $x^{\prime}==x^{\prime}$

Equational reasoning

This is where sharing comes into play: selfEqual (enumFromTo 0 2)
$=$ let $\mathrm{x}=$ enumFromTo 02 in $\mathrm{x}=\mathrm{x}$
$=$ let $x=0$: enumFromTo ($0+1$) 2 in $x==x$
$=$ let $x=0: x^{\prime} ; x^{\prime}=$ enumFromTo ($0+1$) 2 in $x==x$
$=$ let $\mathrm{x}=0: \mathrm{x}^{\prime} ; \mathrm{x}^{\prime}=$ enumFromTo (0 + 1) 2 in $0==0$ \&\& $x^{\prime}==x^{\prime}$
$=$ let $x^{\prime}=$ enumFromTo (0 + 1) 2 in $0==0$ \&\& $x^{\prime}==x^{\prime}$
$=$ let $x^{\prime}=$ enumFromTo $(0+1) 2$ in True \&\& $x^{\prime}==x^{\prime}$
$=$ let $x^{\prime}=$ enumFromTo $(0+1) 2$ in $x^{\prime}==x^{\prime}$

Equational reasoning

This is where sharing comes into play:

$$
\begin{aligned}
& \text { selfEqual (enumFromTo } 02) \\
= & \text { let } x=\text { enumFromTo } 02 \text { in } x==x \\
= & \text { let } x=0: \text { enumFromTo }(0+1) 2 \text { in } x==x \\
= & \text { let } x=0: x^{\prime} ; x^{\prime}=\text { enumFromTo }(0+1) 2 \text { in } x==x \\
= & \text { let } x=0: x^{\prime} ; x^{\prime}=\text { enumFromTo }(0+1) 2 \\
& \text { in } 0=0 \& \& x^{\prime}==x^{\prime} \\
= & \text { let } x^{\prime}=\text { enumFromTo }(0+1) 2 \text { in } 0==0 \& \& x^{\prime}==x^{\prime} \\
= & \text { let } x^{\prime}=\text { enumFromTo }(0+1) 2 \text { in True } \& \& x^{\prime}==x^{\prime} \\
= & \text { let } x^{\prime}=\text { enumFromTo }(0+1) 2 \text { in } x^{\prime}==x^{\prime} \\
= & \ldots \\
= & \text { True }
\end{aligned}
$$

Linear time, but constant space.

Top-level sharing

A somewhat special case is sharing introduced at the top-level.
fib :: Int -> Int
fib $0=0$
fib $1=1$
fib $\mathrm{n}=\mathrm{fib}(\mathrm{n}-1)+\mathrm{fib}(\mathrm{n}-2)$
expensive :: Int
expensive = fib 32

Top-level sharing

```
A somewhat special case is sharing introduced at the top-level.
fib :: Int -> Int
fib \(0=0\)
fib \(1=1\)
fib \(n=f i b(n-1)+f i b(n-2)\)
expensive :: Int
expensive = fib 32
```

Sometimes referred to as CAF (constant applicative form).

Top-level sharing

A somewhat special case is sharing introduced at the top-level.
fib :: Int -> Int
fib $0=0$
fib $1=1$
fib $n=f i b(n-1)+f i b(n-2)$
expensive :: Int
expensive = fib 32

Sometimes referred to as CAF (constant applicative form).

Can be immensely useful, but the lifetime of such an expression is potentially the entire run of the program.

Lightweight inspection

```
GHCi> x = [0 .. 2] :: [Int]
GHCi> :sprint \(x\)
x = _
GHCi> null \(x\)
False
GHCi> :sprint x
x = 0 : _
```

There is also :print which shows slightly more information.

Lightweight inspection

```
GHCi> x = [0 .. 2] :: [Int]
GHCi> :sprint \(x\)
x = _
GHCi> null \(x\)
False
GHCi> :sprint x
\(x=0\) : _
```

There is also :print which shows slightly more information.
Neither command works with cyclic structures. There are other tools such as ghc-heap-view or ghc-debug that are needed for inspecting those.

Example 4: map vs. reverse

Building a pipeline

```
example4a :: Int -> Bool
example4a n = null (map (<= 10) [0 .. n])
```

The new aspect compared to earlier examples is the addition of map in the middle of the pipeline - does it change anything?

Definition of map

$$
\begin{aligned}
& \operatorname{map}::(a->b)->[a]->[b] \\
& \operatorname{map}-[] \quad=[] \\
& \operatorname{map} f(x: x s)=f x: \operatorname{map} f x s
\end{aligned}
$$

Equational reasoning

null (map (<= 10) (enumFromTo 0 2))

Equational reasoning

$$
\text { null (map }(<=10) \text { (enumFromTo } 0 \text { 2) }
$$

Equational reasoning

$$
\begin{aligned}
& \text { null (map (<= 10) (enumFromTo 0 2)) } \\
& =\text { null }(\operatorname{map}(<=10)(0: \text { enumFromTo }(0+1) 2))
\end{aligned}
$$

Equational reasoning

$$
\begin{aligned}
& \text { null (map }(<=10)(\text { enumFromTo } 02)) \\
= & \text { null }(\operatorname{map}(<=10)(0 \text { : enumFromTo }(0+1) 2))
\end{aligned}
$$

Equational reasoning

```
    null (map (<= 10) (enumFromTo 0 2))
= null (map (<= 10) (0 : enumFromTo (0 + 1) 2))
= null ((0 <= 10) : map (<= 10) enumFromTo (0 + 1) 2)
```

Equational reasoning

```
        null (map (<= 10) (enumFromTo 0 2))
= null (map (<= 10) (0 : enumFromTo (0 + 1) 2))
null ((0 <= 10) : map (<= 10) enumFromTo (0 + 1) 2)
```


Equational reasoning

```
    null (map (<= 10) (enumFromTo 0 2))
= null (map (<= 10) (0 : enumFromTo (0 + 1) 2))
= null ((0 <= 10) : map (<= 10) enumFromTo (0 + 1) 2)
= False
```


Equational reasoning

```
    null (map (<= 10) (enumFromTo 0 2))
= null (map (<= 10) (0 : enumFromTo (0 + 1) 2))
= null ((0 <= 10) : map (<= 10) enumFromTo (0 + 1) 2)
= False
```

Still constant space (and time).

Adding a different function

```
example4b :: Int -> Bool
example4b n = null (reverse [0 .. n])
```


Definition of reverse

```
reverse :: [a] -> [a]
reverse = reverseAcc []
reverseAcc :: [a] -> [a] -> [a]
reverseAcc acc [] = acc
reverseAcc acc (x : xs) = reverseAcc (x : acc) xs
```


Equational reasoning

```
    null (reverse (enumFromTo 0 2))
= null (reverseAcc [] (enumFromTo 0 2))
= null (reverseAcc [] (0 : enumFromTo (0 + 1) 2))
= null (reverseAcc (0 : []) (enumFromTo (0 + 1) 2))
```


Equational reasoning

```
    null (reverse (enumFromTo 0 2))
= null (reverseAcc [] (enumFromTo 0 2))
= null (reverseAcc [] (0 : enumFromTo (0 + 1) 2))
= null (reverseAcc (0 : []) (enumFromTo (0 + 1) 2))
= null (reverseAcc (0 : []) (1 : enumFromTo (1 + 1) 2))
= null (reverseAcc (1 : 0 : []) (enumFromTo (1 + 1) 2))
= null (reverseAcc (1 : 0 : []) (2 : enumFromTo (2 + 1) 2))
= null (reverseAcc (2: 1 : 0 : []) (enumFromTo (2 + 1) 2))
= null (reverseAcc (2 : 1 : 0 : []) [])
= null (2 : 1 : 0 : [])
= False
```


Equational reasoning

```
    null (reverse (enumFromTo 0 2))
= null (reverseAcc [] (enumFromTo 0 2))
= null (reverseAcc [] (0 : enumFromTo (0 + 1) 2))
= null (reverseAcc (0 : []) (enumFromTo (0 + 1) 2))
= null (reverseAcc (0: []) (1 : enumFromTo (1 + 1) 2))
= null (reverseAcc (1 : 0 : []) (enumFromTo (1 + 1) 2))
= null (reverseAcc (1 : 0 : []) (2 : enumFromTo (2 + 1) 2))
= null (reverseAcc (2: 1 : 0 : []) (enumFromTo (2 + 1) 2))
= null (reverseAcc (2 : 1 : 0 : []) [])
= null (2 : 1 : 0 : [])
= False
```

This operates in linear space (and time).

Comparing map and reverse

What is the key difference between map and reverse ?

Comparing map and reverse

What is the key difference between map and reverse ?

The function map is incremental, while reverse is not.

Comparing map and reverse

What is the key difference between map and reverse ?

The function map is incremental, while reverse is not.

More precisely:

- for map, we only need to evaluate the input list as far as we want to evaluate the output list.
- for reverse , even for just evaluating the result list to WHNF, we have to evaluate the entire spine of the input list.

Comparing map and reverse

What is the key difference between map and reverse ?

The function map is incremental, while reverse is not.

More precisely:

- for map, we only need to evaluate the input list as far as we want to evaluate the output list.
- for reverse , even for just evaluating the result list to WHNF, we have to evaluate the entire spine of the input list.

Incrementality is not precisely defined, but I am calling functions incremental that can produce (parts of) their output without evaluating all of their input.

Incrementality

Which of the following functions are (or should be) incremental?
$\operatorname{map} f$
reverse

Incrementality

Which of the following functions are (or should be) incremental?
$\operatorname{map} f$
reverse
filter p

Incrementality

Which of the following functions are (or should be) incremental?
$\operatorname{map} f$
reverse
filter p
length

Incrementality

Which of the following functions are (or should be) incremental?
$\operatorname{map} f$
reverse
filter p
length
sum

Incrementality

Which of the following functions are (or should be) incremental?
$\operatorname{map} f$
reverse
filter p
length
sum
and

Incrementality

Which of the following functions are (or should be) incremental?
map f
reverse
filter p
length
sum
and
take n

Incrementality

Which of the following functions are (or should be) incremental?
map f
reverse
filter p
length
sum
and
take n
drop n

Example 5: length

Changing the definition of null once more

```
nullViaLength :: [a] -> Bool
nullViaLength xs = length xs == 0
example5a :: Int -> Bool
example5a n = nullViaLength [0 .. n]
```

How does this compare to the other definitions of null ?

A simpler example

Let us just look at length itself:
example5b :: Int -> Int example5b n = length [0 . . n]

What is the space behaviour?

Definition(s) of length

A (naive) definition of length is bad:
length : : [a] -> Int
length [] = 0
length (_ : xs) = 1 + length xs

Equational reasoning

$$
\begin{aligned}
& \text { length (enumFromTo } 02) \\
= & \text { length }(0 \text { : enumFromTo }(0+1) 2) \\
= & 1+\text { length (enumFromTo }(0+1) 2)
\end{aligned}
$$

Equational reasoning

$$
\begin{aligned}
& \text { length (enumFromTo } 02) \\
= & \text { length }(0 \text { : enumFromTo }(0+1) 2) \\
= & 1+\text { length (enumFromTo }(0+1) 2) \\
= & 1+\text { length }(1: \text { enumFromTo }(1+1) 2) \\
= & 1+(1+(\text { length (enumFromTo }(1+1) 2)))
\end{aligned}
$$

Equational reasoning

$$
\begin{aligned}
& \text { length (enumFromTo } 0 \text { 2) } \\
= & \text { length }(0 \text { : enumFromTo }(0+1) 2) \\
= & 1+\text { length (enumFromTo }(0+1) 2) \\
= & 1+\text { length }(1: \text { enumFromTo }(1+1) 2) \\
= & 1+(1+(\text { length (enumFromTo }(1+1) 2))) \\
= & \ldots \\
= & 1+(1+(1+0)) \\
= & \cdots \\
= & 3
\end{aligned}
$$

Equational reasoning

$$
\begin{aligned}
& \text { length (enumFromTo } 0 \text { 2) } \\
= & \text { length }(0 \text { : enumFromTo }(0+1) 2) \\
= & 1+\text { length (enumFromTo }(0+1) 2) \\
= & 1+\text { length }(1: \text { enumFromTo }(1+1) 2) \\
= & 1+(1+(\text { length (enumFromTo }(1+1) 2))) \\
= & \ldots \\
= & 1+(1+(1+0)) \\
= & \cdots \\
= & 3
\end{aligned}
$$

Runs in linear space.

Definition(s) of length

An accumulating definition of length is potentially not much better:
length :: [a] -> Int
length $=$ lengthAcc 0
lengthAcc :: Int -> [a] -> Int
lengthAcc acc [] = acc
lengthAcc acc (_ : xs) = lengthAcc (1 + acc) xs

Equational reasoning

```
    length (enumFromTo 0 2)
= lengthAcc 0 (enumFromTo 0 2)
= lengthAcc 0 (0 : enumFromTo (0 + 1) 2)
= lengthAcc (1 + 0) (enumFromTo (0 + 1) 2)
```


Equational reasoning

```
    length (enumFromTo 0 2)
= lengthAcc 0 (enumFromTo 0 2)
= lengthAcc 0 (0 : enumFromTo (0 + 1) 2)
= lengthAcc (1 + 0) (enumFromTo (0 + 1) 2)
= lengthAcc (1 + 0) (1 : enumFromTo (1 + 1) 2)
= lengthAcc (1 + (1 + 0)) (enumFromTo (1 + 1) 2)
```


Equational reasoning

$$
\begin{aligned}
&\text { length (enumFromTo } 02) \\
&=\text { lengthAcc } 0 \text { (enumFromTo } 02) \\
&= \text { lengthAcc } 0(0: \text { enumFromTo }(0+1) 2) \\
&= \text { lengthAcc }(1+0)(\text { enumFromTo }(0+1) 2) \\
&= \text { lengthAcc }(1+0)(1: \text { enumFromTo }(1+1) 2) \\
&=\text { lengthAcc }(1+(1+0)) \text { (enumFromTo }(1+1) 2) \\
& \cdots \\
&= \text { lengthAcc }(1+(1+(1+0)))[] \\
&= 1+(1+(1+0)) \\
&= \cdots \\
&= 3
\end{aligned}
$$

Also runs in linear space.

Definition(s) of length

We can fix the problem by artifically making lengthAcc more strict:
length :: [a] -> Int
length $=$ lengthAcc 0
lengthAcc :: Int -> [a] -> Int
lengthAcc !acc [] = acc
lengthAcc !acc (_ : xs) = lengthAcc (1 + acc) xs

Definition(s) of length

We can fix the problem by artifically making lengthAcc more strict:
length :: [a] -> Int
length $=$ lengthAcc 0
lengthAcc :: Int -> [a] -> Int
lengthAcc !acc [] = acc
lengthAcc !acc (_ : xs) = lengthAcc (1 + acc) xs

A bang pattern match will force the argument into WHNF, just as if it was a constructor match.

Equational reasoning

$$
\begin{aligned}
& \text { length (enumFromTo } 02) \\
= & \text { lengthAcc } 0 \text { (enumFromTo } 02) \\
= & \text { lengthAcc } 0(0: \text { enumFromTo }(0+1) 2) \\
= & \text { lengthAcc }(1+0) \text { (enumFromTo }(0+1) 2)
\end{aligned}
$$

Equational reasoning

length (enumFromTo 0 2)
$=$ lengthAcc 0 (enumFromTo 02)
$=$ lengthAcc 0 (0 : enumFromTo (0 + 1) 2)
$=$ lengthAcc $(1+0)$ (enumFromTo $(0+1) 2)$

Equational reasoning

$$
\begin{aligned}
& \text { length (enumFromTo } 02) \\
= & \text { lengthAcc } 0 \text { (enumFromTo } 02) \\
= & \text { lengthAcc } 0(0: \text { enumFromTo }(0+1) 2) \\
= & \text { lengthAcc }(1+0) \text { (enumFromTo }(0+1) 2) \\
= & \text { lengthAcc } 1 \text { (enumFromTo }(0+1) 2)
\end{aligned}
$$

Equational reasoning

$$
\begin{aligned}
& \text { length (enumFromTo } 02) \\
= & \text { lengthAcc } 0 \text { (enumFromTo } 02) \\
= & \text { lengthAcc } 0(0: \text { enumFromTo }(0+1) 2) \\
= & \text { lengthAcc }(1+0) \text { (enumFromTo }(0+1) 2) \\
= & \text { lengthAcc } 1(\text { enumFromTo }(0+1) 2) \\
= & \text { lengthAcc } 1(1: \text { enumFromTo }(1+1) 2)
\end{aligned}
$$

Equational reasoning

```
    length (enumFromTo 0 2)
    = lengthAcc 0 (enumFromTo 0 2)
    = lengthAcc 0 (0 : enumFromTo (0 + 1) 2)
    = lengthAcc (1 + 0) (enumFromTo (0 + 1) 2)
    = lengthAcc 1 (enumFromTo (0 + 1) 2)
    = lengthAcc 1 (1 : enumFromTo (1 + 1) 2)
    = lengthAcc 2 (2 : enumFromTo (2 + 1) 2)
    = lengthAcc 3 []
    = 3
```

Now runs in constant space (but still linear time).

Aside: more on bang patterns

Note: bang patterns only ever make sense on variables. (Why?)

Aside: seq

Historically, Haskell has had seq to control evaluation.
It is primitive, but you could define it in terms of bang patterns:
seq : : a -> b -> b
seq!_ y = y

Aside: seq

Historically, Haskell has had seq to control evaluation.
It is primitive, but you could define it in terms of bang patterns:
seq : : a -> b -> b
seq!_ y = y
lengthAcc :: Int -> [a] -> Int
lengthAcc acc [] = acc
lengthAcc acc (_ : xs) = seq acc (lengthAcc (1 + acc) xs)

Question about seq

```
Why not
force : : a -> a
force \(\mathrm{x}=\) seq x x
lengthAcc :: Int -> [a] -> Int
lengthAcc acc [] = acc
lengthAcc acc (_ : xs) = lengthAcc (force (1 + acc)) xs
```


Question about seq

```
Why not
force : : a -> a
force \(x=\operatorname{seq} x x\)
lengthAcc : : Int -> [a] -> Int
lengthAcc acc [] = acc
lengthAcc acc (_ : xs) = lengthAcc (force (1 + acc)) xs
```

force is just id. It does not create any demand that does not already exist.

Demand analysis

With optimisations on, GHC will detect that the original accumulating version of length will always eventually use the accumulator and make it strict even without bang pattern.

Yet another definition of length

```
length :: [a] -> Int
length = lengthAcc 0
lengthAcc :: Int -> [a] -> Int
lengthAcc _ [] = 0
lengthAcc acc [_] = 1 + acc
lengthAcc acc (_ : xs) = lengthAcc (1 + acc) xs
```

This version does not always use acc, and therefore will not be optimised to use a strict accumulator.

Returning to our initial example

```
nullViaLength :: [a] -> Bool
nullViaLength xs = length xs == 0
example5a :: Int -> Bool
example5a n = nullViaLength [0 .. n]
```


Returning to our initial example

```
nullViaLength :: [a] -> Bool
nullViaLength xs = length xs == 0
example5a :: Int -> Bool
example5a n = nullViaLength [0 .. n]
```

Constant space, but linear time, and therefore unsuitable as a definition of null.

Another variant

```
if nullViaLength xs
    then ...
    else ... sum xs ...
```


Another variant

```
if nullViaLength xs
    then ...
    else ... sum xs ...
```

Sharing can turn something that just looks unnecessarily inefficient into a space leak.

Example 6: unfair partitioning

Partitioning a list

```
example6 :: Int -> (Int, Int)
example6 n =
    case partition (>= 0) [0 .. n] of
    (xs, ys) -> (sum xs, sum ys)
```

(Think of (>= 0) as some kind of sanity check.)

Defining partition

```
partition :: (a -> Bool) -> [a] -> ([a], [a])
partition _ [] = ([], [])
partition p (x : xs) =
    case partition p xs of
    (ys, zs)
    | px -> (x : ys, zs)
    | otherwise -> (ys, x : zs)
```

Is this a good definition?

Equational reasoning

$$
\begin{aligned}
& \quad \text { partition }(>=0)(\text { enumFromTo }(0 \ldots 2)) \\
& = \\
& =\text { partition }(>=0)(0: \text { enumFromTo }(0+1) 2) \\
& \\
& \quad(y s, \text { partition }(>=0)(\text { enumFromTo }(0+1) 2) \text { of } \\
& \\
& \quad \mid \quad(>=0) 0 \rightarrow(0: y s, z s) \\
& \quad \mid \text { otherwise }->(y s, 0: z s)
\end{aligned}
$$

Equational reasoning

```
    partition (>= 0) (enumFromTo (0 . . 2))
\(=\) partition (>= 0) (0 : enumFromTo (0 + 1) 2)
\(=\) case partition (>= 0) (enumFromTo \((0+1) 2)\) of
    (ys, zs)
        | (>= 0) 0 -> (0: ys, zs)
        | otherwise -> (ys, 0 : zs)
    = ...
    \(=\) case (case partition (>= 0) (enumFromTo \((1+1)\) 2) of
        (ys', zs')
                            | (>= 0) 1 -> (1 : ys, zs)
                | otherwise -> (ys, 1 : zs)
        ) of
    (ys, zs)
    | (>= 0) 0 \(\quad\)-> (0: ys, zs)
    | otherwise -> (ys, 0 : zs)
```

Oh no...

Irrefutable pattern matches

We know the result of partition will be a pair, so why wait?

```
partition :: (a -> Bool) -> [a] -> ([a], [a])
partition _ [] = ([], [])
partition p (x : xs) =
    case partition p xs of
    ~(ys, zs)
    | p x -> (x : ys, zs)
    | otherwise -> (ys, x : zs)
```

An irrefutable match will always succeed. You can think of it as being rewritten to using selectors.

An equivalent but uglier definition of partition

```
partition :: (a -> Bool) -> [a] -> ([a], [a])
partition _ [] = ([], [])
partition p (x : xs) =
    let r = partition p xs
    in if p x
        then (x : fst r, snd r)
        else (fst r, x : snd r)
```


Aside: irrefutable patterns

Why are irrefutable patterns so rare?

Pwell-Typed

Aside: irrefutable patterns

Why are irrefutable patterns so rare?

Because let pattern matches are implicitly irrefutable.

Aside: irrefutable patterns

Why are irrefutable patterns so rare?

Because let pattern matches are implicitly irrefutable.

Can you think of other functions that morally require an irrefutable pattern match?

Equational reasoning

```
    partition (>= 0) (enumFromTo (0 . . 2))
= partition (>= 0) (0 : enumFromTo (0 + 1) 2)
= let r = partition (>= 0) (enumFromTo (0 + 1) 2)
    in if (>= 0) 0
        then (0 : fst r, snd r)
        else (fst r, 0 : snd r)
```


Equational reasoning

```
    partition (>= 0) (enumFromTo (0 . . 2))
= partition (>= 0) (0 : enumFromTo (0 + 1) 2)
= let r = partition (>= 0) (enumFromTo (0 + 1) 2)
    in if (>= 0) 0
        then (0 : fst r, snd r)
        else (fst r, 0 : snd r)
= let r = partition (>= 0) (enumFromTo (0 + 1) 2)
    in (0 : fst r, snd r)
```

This is better. We already have quite a bit of information at this point - in particular, the result is now in WHNF!

Equational reasoning

Let's assume we place more demand on the first component of the result pair, i.e., on fst r :

```
let r = partition (>= 0) (enumFromTo (0 + 1) 2)
in (0 : fst r, snd r)
```


Equational reasoning

Let's assume we place more demand on the first component of the result pair, i.e., on fst r :

```
    let r = partition (>= 0) (enumFromTo (0 + 1) 2)
    in (0 : fst r, snd r)
= let r = let r' = partition (>= 0) (enumFromTo (1 + 1) 2)
    in (1 : fst r', snd r')
    in (0 : fst r, snd r)
```


Equational reasoning

Let's assume we place more demand on the first component of the result pair, i.e., on fst r :

```
    let r = partition (>= 0) (enumFromTo (0 + 1) 2)
    in (0 : fst r, snd r)
= let r = let r' = partition (>= 0) (enumFromTo (1 + 1) 2)
    in (1 : fst r', snd r')
    in (0 : fst r, snd r)
= let r' = partition (>= 0) (enumFromTo (1 + 1) 2)
    r = (1 : fst r', snd r')
    in (0 : fst r, snd r)
```


Equational reasoning

Let's assume we place more demand on the first component of the result pair, i.e., on fst r :

```
    let r = partition (>= 0) (enumFromTo (0 + 1) 2)
    in (0 : fst r, snd r)
= let r = let r' = partition (>= 0) (enumFromTo (1 + 1) 2)
        in (1 : fst r', snd r')
    in (0 : fst r, snd r)
= let r' = partition (>= 0) (enumFromTo (1 + 1) 2)
        r = (1 : fst r', snd r')
    in (0 : fst r, snd r)
= let r' = partition (>= 0) (enumFromTo (1 + 1) 2)
        r = (1 : fst r', snd r')
    in (0 : 1 : fst r', snd r)
```

Isn't there still a problem here?

Selector thunk optimisation

$$
\begin{aligned}
\text { let } r^{\prime} & =\text { partition }(>=0) \text { (enumFromTo }(1+1) 2) \\
r & =\left(1: \text { fst } r^{\prime} \text {, snd } r^{\prime}\right) \\
& \text { in }\left(0: 1: \text { fst } r^{\prime} \text {, snd } r\right) \\
= & \text { let } \left.r^{\prime}=\text { partition }(>=0) \text { (enumFromTo }(1+1) 2\right) \\
& \text { in }\left(0: 1 \text { : fst } r^{\prime} \text {, snd } r^{\prime}\right)
\end{aligned}
$$

The garbage collector will reduce selector thunks if possible, even if there's no explicit demand on them.

Revisiting the example

```
example6 :: Int -> (Int, Int)
example6 n =
    case partition (>= 0) [0 . n] of
    (xs, ys) -> (sum xs, sum ys)
```


Equational reasoning

$$
\begin{aligned}
& \text { case partition }(>=0) \text { (enumFromTo } 02) \text { of } \\
& \quad(x s, y s)->(\text { sum xs, sum ys) }
\end{aligned}
$$

Equational reasoning

$$
\begin{aligned}
& \text { case partition }(>=0) \text { (enumFromTo } 02) \text { of } \\
& \quad(x s, \text { ys) }->(\text { sum xs, sum ys) } \\
& =\text { case (let } r=\text { partition }(>=0) \text { (enumFromTo }(0+1) 2) \\
& \quad \text { in }(0: \text { fst } r \text {, snd } r) \text {) of } \\
& \quad(x s, y s) \rightarrow(\text { sum xs, sum ys) }
\end{aligned}
$$

Equational reasoning

$$
\begin{aligned}
& \text { case partition }(>=0) \text { (enumFromTo } 02) \text { of } \\
& \quad(x s, \text { ys) }->(\text { sum xs, sum ys) } \\
& = \\
& \text { case (let } r=\text { partition }(>=0) \text { (enumFromTo }(0+1) 2) \\
& \quad \text { in }(0: \text { fst } r \text {, snd } r)) \text { of } \\
& \quad(x s, y s)->(\text { sum xs, sum ys) } \\
& = \\
& \text { let } r=\text { partition }(>=0)(\text { enumFromTo }(0+1) 2) \\
& \\
& \text { in (sum }(0: \text { fst } r) \text {, sum (snd } r))
\end{aligned}
$$

This is in WHNF. Will it be ok if we proceed placing demand on it, e.g. by printing the result?

Example 7: fair partitioning

A variant of our previous example

```
example7a :: Int -> (Int, Int)
example7a n =
    case partition even [0 .. n] of
    (xs, ys) -> (sum xs, sum ys)
```

The only difference is that we are using even instead of (>= 0).

Equational reasoning

$$
\begin{aligned}
& \text { case partition even (enumFromTo } 0 \text { 2) of } \\
& \text { (xs, ys) -> (sum xs, sum ys) }
\end{aligned}
$$

Equational reasoning

$$
\begin{aligned}
& \text { case partition even (enumFromTo } 0 \text { 2) of } \\
& \quad(x s, \text { ys) }->\text { (sum xs, sum ys) } \\
& =\text { case (let } r=\text { partition even (enumFromTo }(0+1) 2) \\
& \quad \text { in }(0 \text { : fst } r \text {, snd } r) \text {) of } \\
& \quad(x s, y s) \rightarrow(\text { sum } x s, \text { sum ys) }
\end{aligned}
$$

Equational reasoning

$$
\begin{aligned}
& \text { case partition even (enumFromTo } 0 \text { 2) of } \\
& \quad(x s, \text { ys) }->\text { (sum xs, sum ys) } \\
& = \\
& \text { case (let } r=\text { partition even (enumFromTo }(0+1) 2) \\
& \quad \text { in }(0: \text { fst } r \text {, snd } r)) \text { of } \\
& \quad(x s, y s)->(\text { sum } x s \text {, sum ys) } \\
& = \\
& \text { let } r=\text { partition even (enumFromTo }(0+1) 2) \\
& \\
& \text { in (sum }(0 \text { : fst } r) \text {, sum }(\text { snd } r))
\end{aligned}
$$

Equational reasoning

$$
\begin{aligned}
& \text { case partition even (enumFromTo } 0 \text { 2) of } \\
& \quad(x s, \text { ys) }->(\text { sum } x s \text {, sum ys) } \\
= & \text { case (let } r=\text { partition even (enumFromTo }(0+1) 2) \\
& \quad \text { in }(0: \text { fst } r \text {, snd } r)) \text { of } \\
& \quad(x s, \text { ys) }->(\text { sum xs, sum ys) } \\
= & \text { let } r=\text { partition even (enumFromTo }(0+1) 2) \\
& \text { in }(\text { sum }(0: \text { fst } r) \text {, sum }(\text { snd } r)) \\
= & \text { let } r=\text { partition even (enumFromTo }(1+1) 2) \\
& \text { in (sumAcc } 0(f s t r) \text {, sum }(1: \text { snd } r))
\end{aligned}
$$

While we are evaluating the first component of the pair, the second component grows larger ...

A better way?

The problematic pattern here is that we are generating ([Int], [Int])
but the generation of the two lists is not independent, and the distribution is not statically known.

A better way?

The problematic pattern here is that we are generating ([Int], [Int])
but the generation of the two lists is not independent, and the distribution is not statically known.

```
partitionEvenSums :: [Int] -> (Int, Int)
partitionEvenSums = partitionEvenSumsAcc (0, 0)
partitionEvenSumsAcc :: (Int, Int) -> [Int] -> (Int, Int)
partitionEvenSumsAcc (!x, !y) [] = (x, y)
partitionEvenSumsAcc (!x, !y) (z : zs) =
    if even z then partitionEvenSumsAcc (x + z, y) zs
    else partitionEvenSumsAcc (x, y + z) zs
```


Revisiting the example

```
example7b :: Int -> (Int, Int)
example7b n = partitionEvenSums [0 .. n]
```

This works in constant space (but is less modular).

Revisiting the example

```
example7b :: Int -> (Int, Int)
example7b n = partitionEvenSums [0 . n]
```

This works in constant space (but is less modular).

Libraries such as fold ll or streamly can help restore modularity here.

Writer monad

data Writer w a = Writer wa

A similar problem arises here as we have seen for partitioning. For Writer, it is typically even worse because monadic computations will often run for a very long time.

Example 8: effectful traversals

Traversing a list

example8a $\mathrm{n}=$ length <\$> traverse pure [0 . . n]

Traversing a list

example8a $\mathrm{n}=$ length $<\$>$ traverse pure [0 . . n]

Definition of traverse on lists:
traverse :: Applicative f => (a -> f b) -> [a] -> f [b]
traverse _ [] = pure []
traverse f (x : xs) = pure (:) <*> f x <*> traverse f xs

What applicative functor?

Does the choice of applicative functor matter?

What applicative functor?

Does the choice of applicative functor matter?

What about each of

- Identity
- Maybe
- IO

Identity

example8a :: Int -> Identity Int
newtype Identity a = Identity \{runIdentity : : a\}
instance Functor Identity where fmap f x = pure f <*> x
instance Applicative Identity where
pure = Identity
f <*> x = Identity ((runIdentity f) (runIdentity x))

Equational reasoning

```
    traverse pure (enumFromTo 0 2)
= traverse pure (0 : enumFromTo (0 + 1) 2)
= pure (:) <*> pure 0
    <*> traverse pure (enumFromTo (0 + 1) 2)
```


Equational reasoning

```
    traverse pure (enumFromTo 0 2)
= traverse pure (0 : enumFromTo (0 + 1) 2)
= pure (:) <*> pure 0
    <*> traverse pure (enumFromTo (0 + 1) 2)
= Identity (runIdentity (pure (:)) <*> runIdentity (pure 0))
    <*> traverse pure (enumFromTo (0 + 1) 2)
```


Equational reasoning

```
    traverse pure (enumFromTo 0 2)
= traverse pure (0 : enumFromTo (0 + 1) 2)
= pure (:) <*> pure 0
    <*> traverse pure (enumFromTo (0 + 1) 2)
= Identity (runIdentity (pure (:)) <*> runIdentity (pure 0))
    <*> traverse pure (enumFromTo (0 + 1) 2)
= Identity ((:) 0)
    <*> traverse pure (enumFromTo (0 + 1) 2)
```


Equational reasoning

```
    traverse pure (enumFromTo 0 2)
= traverse pure (0 : enumFromTo (0 + 1) 2)
= pure (:) <*> pure 0
    <*> traverse pure (enumFromTo (0 + 1) 2)
= Identity (runIdentity (pure (:)) <*> runIdentity (pure 0))
    <*> traverse pure (enumFromTo (0 + 1) 2)
= Identity ((:) 0)
    <*> traverse pure (enumFromTo (0 + 1) 2)
= Identity
    (0 : runIdentity (traverse pure (enumFromTo (0 + 1) 2)))
```

This looks fine (and it is).
Runs in constant space.

Maybe

example8b :: Int -> Maybe Int
data Maybe $a=$ Nothing | Just a
instance Functor Maybe where
fmap f x = pure f <*> x
instance Applicative Maybe where
pure = Just
Nothing <*> _ = Nothing
Just _ <*> Nothing = Nothing
Just f <*> Just $\mathrm{x}=$ Just ($\mathrm{f} x$)

Equational reasoning

```
traverse pure (enumFromTo 0 2)
    = traverse pure (0 : enumFromTo (0 + 1) 2)
    = pure (:) <*> pure 0
        <*> traverse pure (enumFromTo (0 + 1) 2)
    = Just (:) <*> Just 0
        <*> traverse pure (enumFromTo (0 + 1) 2)
    = Just ((:) 0) <*> traverse pure (enumFromTo (0 + 1) 2)
```

This is looking bad.
Runs in linear space.

A possible fix

traverseLength :: [a] -> Maybe Int traverseLength = traverseLengthAcc 0
traverseLengthAcc :: Int -> [a] -> Maybe Int
traverseLengthAcc !acc [] = Just acc
traverseLengthAcc !acc (x : xs) = pure x *> traverseLengthAcc (1 + acc) xs

Conclusions

