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About Well-Typed

▶ Well-Typed is a Haskell consultancy company, established in 2008
▶ Team of about 20 Haskell experts
▶ Wide variety of clients

▶ GHC and tooling maintenance, development and support
▶ Haskell software development and consulting
▶ On-site and remote training courses
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GHC support and maintenance

https://well-typed.com/blog/2022/11/funding-ghc-maintenance/
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About me

▶ Using Haskell since about 1997
▶ Studied mathematics in Konstanz, PhD in Computer Science at

Utrecht 2004
▶ At Well-Typed since 2010
▶ Living in Regensburg, Germany
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Haskell Interlude

https://haskell.foundation/podcast/
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Haskell Unfolder

https://www.youtube.com/@well-typed

Next episode on Wednesday, 14 June, on a topic related to this talk!
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Repository

This presentation and the code samples are available from

https://github.com/well-typed/lazy-evaluation-zurihac-2023
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The plan

▶ Look at lazy evaluation and try to reason about simple programs.
▶ Build an intuition for lazy evaluation.
▶ Discuss some common pitfalls.

Not:

▶ Complete in any sense.
▶ Dive deep into GHC-specific optimisations.
▶ Learn how to track down space leaks in large code bases.
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Informal introduction



Lazy evaluation

What is lazy evaluation?

▶ evaluate as little as possible, just when needed, and . . .
▶ share computation results if they are needed multiple times.

What is a space leak?

A situation where memory is retained by the program unexpectedly
long.
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Lazy evaluation

Why do we evaluate anything at all?

▶ Some result we are interested in creates demand on other results.
▶ Demand is propagated through functions and language

constructs such as case (or more generally pattern matching).

We will try to make these points more precise throughout the lecture.
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Example 1: null



A first example

example1 :: Int -> Bool
example1 n = null [0 .. n]

How much space does this use (in terms of n )?
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Looking at definitions

Let’s start with our own definitions.
null :: [a] -> Bool
null [] = True
null (_ : _) = False

enumFromTo :: Int -> Int -> [Int]
enumFromTo l u =
if l > u
then []
else l : enumFromTo (l + 1) u

In Haskell, [m .. n] is syntactic sugar for enumFromTo m n .
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Equational reasoning

Let’s assume n = 2 :

null (enumFromTo 0 2)

= null (if 0 > 2 then [] else 0 : enumFromTo (0 + 1) 2)
= null (if False then [] else 0 : enumFromTo (0 + 1) 2)
= null (0 : enumFromTo (0 + 1) 2)
= False

Reduction sequence does not depend on n ,
only on 0 > n being False .

Answer to our original question is constant space (and time).
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Redexes

null (0 : enumFromTo (0 + 1) 2)

We generally have more than one redex (reducible expression).

One aspect of lazy evaluation is that we are generally choosing the
outermost redex.
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Lightweight measuring

▶ Write the program.
▶ Run with different inputs (for n ) and observe memory

consumption.
▶ Use GHC RTS flags to get helpful info about memory use.
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Demand?

Why does anything happen at all?

▶ We want to print the resulting Bool .
▶ In order to print it, we have to know it.
▶ So we have to evaluate the call to null .
▶ Why can’t we reduce null (enumFromTo 0 2) directly?
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Pattern matching

null :: [a] -> Bool
null [] = True
null (_ : _) = False

The pattern match on the input drives evaluation, i.e., it propagates
demand.

Well-Typed



Just enough evaluation

As can be observed by the reduction

null (0 : enumFromTo (0 + 1) 2)
= False

revealing the top-level constructor is sufficient to reduce null .

An expression is in weak head-normal form (WHNF) if it is a
constructor application (or a lambda).

Intuitively, if any evaluation is needed at all, then evaluating up to weak
head-normal form is the least amount of evaluation that can enable
new reduction opportunities.
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How much evaluation?

So what about each of the following?
null (repeat 1)
null undefined
null (1 : undefined)
null (undefined : undefined)
null (let x = x in x)
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Aside: strict functions

A function f is called strict if and only if f ⊥ = ⊥ .

(Here, ⊥ is a special value that subsumes anything that crashes or
loops, e.g. undefined .)

Good:

Strictness is defined in terms of a function’s behaviour, not its
implementation.

Not so good:

Some implications of the definition might be unintuitive.

The notion is not very precise, because there are “various degrees of
strictness”.
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Examples

Is null strict?

Yes!
GHCi> null undefined
*** Exception: Prelude.undefined
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Examples

What is an example of a non-strict function?

constZero :: a -> Int
constZero _ = 0

GHCi> constZero undefined
0
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Identity

id :: a -> a
id x = x

Is id strict?

Yes!
GHCi> id undefined
*** Exception: Prelude.undefined

Note that id propagates demand on the result to demand on its
argument.
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Another corner case

constError :: a -> b
constError _ = undefined

This function is also strict.
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Example 2: null via equality



Changed definition of null

nullViaEq xs = xs == []
example2 :: Int -> Bool
example2 n = nullViaEq [0 .. n]

Does this change anything?

Well-Typed



Definition of equality on lists

instance Eq a => Eq [a] where
[] == [] = True
(x : xs) == (y : ys) = x == y && xs == ys
_xs == _ys = False
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Equational reasoning

nullViaEq (enumFromTo 0 2)

= enumFromTo 0 2 == []
= (if 0 > 2 then [] else 0 : enumFromTo (0 + 1) 2) == []
= (if False then [] else 0 : enumFromTo (0 + 1) 2) == []
= (0 : enumFromTo (0 + 1) 2) == []
= False

Reduction steps change, but still independent of n .

Still constant space (and time).
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Aside: which definition is better?

Which of the two definitions of null is better?

The function nullViaEq has an unnecessarily restrictive type:

nullViaEq :: Eq a => [a] -> Bool
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Example 3: self equality



Comparing a list to itself

selfEqual :: Eq a => a -> Bool
selfEqual x = x == x

example3 :: Int -> Bool
example3 n = selfEqual [0 .. n]

We are once again interested in the space behaviour.
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Equational reasoning

This is where sharing comes into play:
selfEqual (enumFromTo 0 2)

= let x = enumFromTo 0 2 in x == x
= let x = 0 : enumFromTo (0 + 1) 2 in x == x
= let x = 0 : x'; x' = enumFromTo (0 + 1) 2 in x == x
= let x = 0 : x'; x' = enumFromTo (0 + 1) 2

in 0 == 0 && x' == x'
= let x' = enumFromTo (0 + 1) 2 in 0 == 0 && x' == x'
= let x' = enumFromTo (0 + 1) 2 in True && x' == x'
= let x' = enumFromTo (0 + 1) 2 in x' == x'
= ...
= True

Linear time, but constant space.
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= let x' = enumFromTo (0 + 1) 2 in 0 == 0 && x' == x'
= let x' = enumFromTo (0 + 1) 2 in True && x' == x'
= let x' = enumFromTo (0 + 1) 2 in x' == x'
= ...
= True

Linear time, but constant space.
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Top-level sharing

A somewhat special case is sharing introduced at the top-level.

fib :: Int -> Int
fib 0 = 0
fib 1 = 1
fib n = fib (n - 1) + fib (n - 2)
expensive :: Int
expensive = fib 32

Sometimes referred to as CAF (constant applicative form).

Can be immensely useful, but the lifetime of such an expression is
potentially the entire run of the program.
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Lightweight inspection

GHCi> x = [0 .. 2] :: [Int]
GHCi> :sprint x
x = _
GHCi> null x
False
GHCi> :sprint x
x = 0 : _

There is also :print which shows slightly more information.

Neither command works with cyclic structures. There are other tools
such as ghc-heap-view or ghc-debug that are needed for inspecting
those.
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Example 4: map vs. reverse



Building a pipeline

example4a :: Int -> Bool
example4a n = null (map (<= 10) [0 .. n])

The new aspect compared to earlier examples is the addition of map
in the middle of the pipeline – does it change anything?

Well-Typed



Definition of map

map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x : xs) = f x : map f xs

Well-Typed



Equational reasoning

null (map (<= 10) (enumFromTo 0 2))

= null (map (<= 10) (0 : enumFromTo (0 + 1) 2))
= null ((0 <= 10) : map (<= 10) enumFromTo (0 + 1) 2)
= False

Still constant space (and time).

Well-Typed
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Equational reasoning
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= null ((0 <= 10) : map (<= 10) enumFromTo (0 + 1) 2)
= False

Still constant space (and time).
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Adding a different function

example4b :: Int -> Bool
example4b n = null (reverse [0 .. n])

Well-Typed



Definition of reverse

reverse :: [a] -> [a]
reverse = reverseAcc []
reverseAcc :: [a] -> [a] -> [a]
reverseAcc acc [] = acc
reverseAcc acc (x : xs) = reverseAcc (x : acc) xs

Well-Typed



Equational reasoning

null (reverse (enumFromTo 0 2))
= null (reverseAcc [] (enumFromTo 0 2))
= null (reverseAcc [] (0 : enumFromTo (0 + 1) 2))
= null (reverseAcc (0 : []) (enumFromTo (0 + 1) 2))

= null (reverseAcc (0 : []) (1 : enumFromTo (1 + 1) 2))
= null (reverseAcc (1 : 0 : []) (enumFromTo (1 + 1) 2))
= null (reverseAcc (1 : 0 : []) (2 : enumFromTo (2 + 1) 2))
= null (reverseAcc (2 : 1 : 0 : []) (enumFromTo (2 + 1) 2))
= null (reverseAcc (2 : 1 : 0 : []) [])
= null (2 : 1 : 0 : [])
= False

This operates in linear space (and time).
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Equational reasoning
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= null (reverseAcc (1 : 0 : []) (enumFromTo (1 + 1) 2))
= null (reverseAcc (1 : 0 : []) (2 : enumFromTo (2 + 1) 2))
= null (reverseAcc (2 : 1 : 0 : []) (enumFromTo (2 + 1) 2))
= null (reverseAcc (2 : 1 : 0 : []) [])
= null (2 : 1 : 0 : [])
= False

This operates in linear space (and time).
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Comparing map and reverse

What is the key difference between map and reverse ?

The function map is incremental, while reverse is not.

More precisely:

▶ for map , we only need to evaluate the input list as far as we want
to evaluate the output list.

▶ for reverse , even for just evaluating the result list to WHNF, we
have to evaluate the entire spine of the input list.

Incrementality is not precisely defined, but I am calling functions
incremental that can produce (parts of) their output without evaluating
all of their input.

Well-Typed
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Incrementality

Which of the following functions are (or should be) incremental?
map f
reverse

filter p
length
sum
and
take n
drop n
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Example 5: length



Changing the definition of null once more

nullViaLength :: [a] -> Bool
nullViaLength xs = length xs == 0
example5a :: Int -> Bool
example5a n = nullViaLength [0 .. n]

How does this compare to the other definitions of null ?

Well-Typed



A simpler example

Let us just look at length itself:

example5b :: Int -> Int
example5b n = length [0 .. n]

What is the space behaviour?

Well-Typed



Definition(s) of length

A (naive) definition of length is bad:

length :: [a] -> Int
length [] = 0
length (_ : xs) = 1 + length xs

Well-Typed



Equational reasoning

length (enumFromTo 0 2)
= length (0 : enumFromTo (0 + 1) 2)
= 1 + length (enumFromTo (0 + 1) 2)

= 1 + length (1 : enumFromTo (1 + 1) 2)
= 1 + (1 + (length (enumFromTo (1 + 1) 2)))
= ...
= 1 + (1 + (1 + 0))
= ...
= 3

Runs in linear space.

Well-Typed
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Equational reasoning

length (enumFromTo 0 2)
= length (0 : enumFromTo (0 + 1) 2)
= 1 + length (enumFromTo (0 + 1) 2)
= 1 + length (1 : enumFromTo (1 + 1) 2)
= 1 + (1 + (length (enumFromTo (1 + 1) 2)))
= ...
= 1 + (1 + (1 + 0))
= ...
= 3

Runs in linear space.
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Definition(s) of length

An accumulating definition of length is potentially not much better:

length :: [a] -> Int
length = lengthAcc 0
lengthAcc :: Int -> [a] -> Int
lengthAcc acc [] = acc
lengthAcc acc (_ : xs) = lengthAcc (1 + acc) xs

Well-Typed



Equational reasoning

length (enumFromTo 0 2)
= lengthAcc 0 (enumFromTo 0 2)
= lengthAcc 0 (0 : enumFromTo (0 + 1) 2)
= lengthAcc (1 + 0) (enumFromTo (0 + 1) 2)

= lengthAcc (1 + 0) (1 : enumFromTo (1 + 1) 2)
= lengthAcc (1 + (1 + 0)) (enumFromTo (1 + 1) 2)
...
= lengthAcc (1 + (1 + (1 + 0))) []
= 1 + (1 + (1 + 0))
= ...
= 3

Also runs in linear space.
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Equational reasoning

length (enumFromTo 0 2)
= lengthAcc 0 (enumFromTo 0 2)
= lengthAcc 0 (0 : enumFromTo (0 + 1) 2)
= lengthAcc (1 + 0) (enumFromTo (0 + 1) 2)
= lengthAcc (1 + 0) (1 : enumFromTo (1 + 1) 2)
= lengthAcc (1 + (1 + 0)) (enumFromTo (1 + 1) 2)

...
= lengthAcc (1 + (1 + (1 + 0))) []
= 1 + (1 + (1 + 0))
= ...
= 3

Also runs in linear space.
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Equational reasoning

length (enumFromTo 0 2)
= lengthAcc 0 (enumFromTo 0 2)
= lengthAcc 0 (0 : enumFromTo (0 + 1) 2)
= lengthAcc (1 + 0) (enumFromTo (0 + 1) 2)
= lengthAcc (1 + 0) (1 : enumFromTo (1 + 1) 2)
= lengthAcc (1 + (1 + 0)) (enumFromTo (1 + 1) 2)
...
= lengthAcc (1 + (1 + (1 + 0))) []
= 1 + (1 + (1 + 0))
= ...
= 3

Also runs in linear space.
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Definition(s) of length

We can fix the problem by artifically making lengthAcc more strict:

length :: [a] -> Int
length = lengthAcc 0
lengthAcc :: Int -> [a] -> Int
lengthAcc !acc [] = acc
lengthAcc !acc (_ : xs) = lengthAcc (1 + acc) xs

A bang patternmatch will force the argument into WHNF, just as if it
was a constructor match.

Well-Typed
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Equational reasoning

length (enumFromTo 0 2)
= lengthAcc 0 (enumFromTo 0 2)
= lengthAcc 0 (0 : enumFromTo (0 + 1) 2)
= lengthAcc (1 + 0) (enumFromTo (0 + 1) 2)

= lengthAcc 1 (enumFromTo (0 + 1) 2)
= lengthAcc 1 (1 : enumFromTo (1 + 1) 2)
= lengthAcc 2 (2 : enumFromTo (2 + 1) 2)
= lengthAcc 3 []
= 3

Now runs in constant space (but still linear time).
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Equational reasoning

length (enumFromTo 0 2)
= lengthAcc 0 (enumFromTo 0 2)
= lengthAcc 0 (0 : enumFromTo (0 + 1) 2)
= lengthAcc (1 + 0) (enumFromTo (0 + 1) 2)
= lengthAcc 1 (enumFromTo (0 + 1) 2)
= lengthAcc 1 (1 : enumFromTo (1 + 1) 2)
= lengthAcc 2 (2 : enumFromTo (2 + 1) 2)
= lengthAcc 3 []
= 3

Now runs in constant space (but still linear time).
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Aside: more on bang patterns

Note: bang patterns only ever make sense on variables.

(Why?)
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Aside: seq

Historically, Haskell has had seq to control evaluation.

It is primitive, but you could define it in terms of bang patterns:

seq :: a -> b -> b
seq !_ y = y

lengthAcc :: Int -> [a] -> Int
lengthAcc acc [] = acc
lengthAcc acc (_ : xs) = seq acc (lengthAcc (1 + acc) xs)
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lengthAcc :: Int -> [a] -> Int
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Question about seq

Why not

force :: a -> a
force x = seq x x

lengthAcc :: Int -> [a] -> Int
lengthAcc acc [] = acc
lengthAcc acc (_ : xs) = lengthAcc (force (1 + acc)) xs

force is just id . It does not create any demand that does not
already exist.

Well-Typed
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Demand analysis

With optimisations on, GHC will detect that the original accumulating
version of length will always eventually use the accumulator and
make it strict even without bang pattern.
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Yet another definition of length

length :: [a] -> Int
length = lengthAcc 0
lengthAcc :: Int -> [a] -> Int
lengthAcc _ [] = 0
lengthAcc acc [_] = 1 + acc
lengthAcc acc (_ : xs) = lengthAcc (1 + acc) xs

This version does not always use acc , and therefore will not be
optimised to use a strict accumulator.

Well-Typed



Returning to our initial example

nullViaLength :: [a] -> Bool
nullViaLength xs = length xs == 0
example5a :: Int -> Bool
example5a n = nullViaLength [0 .. n]

Constant space, but linear time, and therefore unsuitable as a
definition of null .

Well-Typed
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example5a :: Int -> Bool
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definition of null .
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Another variant

if nullViaLength xs
then ...
else ... sum xs ...

Sharing can turn something that just looks unnecessarily inefficient
into a space leak.
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Another variant
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Sharing can turn something that just looks unnecessarily inefficient
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Example 6: unfair partitioning



Partitioning a list

example6 :: Int -> (Int, Int)
example6 n =
case partition (>= 0) [0 .. n] of
(xs, ys) -> (sum xs, sum ys)

(Think of (>= 0) as some kind of sanity check.)
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Defining partition

partition :: (a -> Bool) -> [a] -> ([a], [a])
partition _ [] = ([], [])
partition p (x : xs) =
case partition p xs of
(ys, zs)

| p x -> (x : ys, zs)
| otherwise -> (ys, x : zs)

Is this a good definition?

Well-Typed



Equational reasoning

partition (>= 0) (enumFromTo (0 .. 2))
= partition (>= 0) (0 : enumFromTo (0 + 1) 2)
= case partition (>= 0) (enumFromTo (0 + 1) 2) of

(ys, zs)
| (>= 0) 0 -> (0 : ys, zs)
| otherwise -> (ys, 0 : zs)

= ...
= case (case partition (>= 0) (enumFromTo (1 + 1) 2) of

(ys', zs')
| (>= 0) 1 -> (1 : ys, zs)
| otherwise -> (ys, 1 : zs)

) of
(ys, zs)

| (>= 0) 0 -> (0 : ys, zs)
| otherwise -> (ys, 0 : zs)

Oh no . . .
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Equational reasoning

partition (>= 0) (enumFromTo (0 .. 2))
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(ys, zs)
| (>= 0) 0 -> (0 : ys, zs)
| otherwise -> (ys, 0 : zs)

= ...
= case (case partition (>= 0) (enumFromTo (1 + 1) 2) of

(ys', zs')
| (>= 0) 1 -> (1 : ys, zs)
| otherwise -> (ys, 1 : zs)

) of
(ys, zs)
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| otherwise -> (ys, 0 : zs)

Oh no . . .
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Irrefutable pattern matches

We know the result of partition will be a pair, so why wait?

partition :: (a -> Bool) -> [a] -> ([a], [a])
partition _ [] = ([], [])
partition p (x : xs) =
case partition p xs of
~(ys, zs)

| p x -> (x : ys, zs)
| otherwise -> (ys, x : zs)

An irrefutablematch will always succeed. You can think of it as being
rewritten to using selectors.

Well-Typed



An equivalent but uglier definition of partition

partition :: (a -> Bool) -> [a] -> ([a], [a])
partition _ [] = ([], [])
partition p (x : xs) =
let r = partition p xs
in if p x

then (x : fst r, snd r)
else (fst r, x : snd r)

Well-Typed



Aside: irrefutable patterns

Why are irrefutable patterns so rare?

Because let pattern matches are implicitly irrefutable.

Can you think of other functions that morally require an
irrefutable pattern match?
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Equational reasoning

partition (>= 0) (enumFromTo (0 .. 2))
= partition (>= 0) (0 : enumFromTo (0 + 1) 2)
= let r = partition (>= 0) (enumFromTo (0 + 1) 2)

in if (>= 0) 0
then (0 : fst r, snd r)
else (fst r, 0 : snd r)

= let r = partition (>= 0) (enumFromTo (0 + 1) 2)
in (0 : fst r, snd r)

This is better. We already have quite a bit of information at this point – in
particular, the result is now in WHNF!
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Equational reasoning

Let’s assume we place more demand on the first component of the result
pair, i.e., on fst r :

let r = partition (>= 0) (enumFromTo (0 + 1) 2)
in (0 : fst r, snd r)

= let r = let r' = partition (>= 0) (enumFromTo (1 + 1) 2)
in (1 : fst r', snd r')

in (0 : fst r, snd r)
= let r' = partition (>= 0) (enumFromTo (1 + 1) 2)

r = (1 : fst r', snd r')
in (0 : fst r, snd r)

= let r' = partition (>= 0) (enumFromTo (1 + 1) 2)
r = (1 : fst r', snd r')

in (0 : 1 : fst r', snd r)

Isn’t there still a problem here?
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Selector thunk optimisation

let r' = partition (>= 0) (enumFromTo (1 + 1) 2)
r = (1 : fst r', snd r')

in (0 : 1 : fst r', snd r)
= let r' = partition (>= 0) (enumFromTo (1 + 1) 2)

in (0 : 1 : fst r', snd r')

The garbage collector will reduce selector thunks if possible, even if there’s
no explicit demand on them.

Well-Typed



Revisiting the example

example6 :: Int -> (Int, Int)
example6 n =
case partition (>= 0) [0 .. n] of
(xs, ys) -> (sum xs, sum ys)
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Equational reasoning

case partition (>= 0) (enumFromTo 0 2) of
(xs, ys) -> (sum xs, sum ys)

= case (let r = partition (>= 0) (enumFromTo (0 + 1) 2)
in (0 : fst r, snd r)) of

(xs, ys) -> (sum xs, sum ys)
= let r = partition (>= 0) (enumFromTo (0 + 1) 2)

in (sum (0 : fst r), sum (snd r))

This is in WHNF. Will it be ok if we proceed placing demand on it, e.g. by
printing the result?
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Equational reasoning
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Equational reasoning
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Example 7: fair partitioning



A variant of our previous example

example7a :: Int -> (Int, Int)
example7a n =
case partition even [0 .. n] of
(xs, ys) -> (sum xs, sum ys)

The only difference is that we are using even instead of (>= 0) .
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Equational reasoning

case partition even (enumFromTo 0 2) of
(xs, ys) -> (sum xs, sum ys)

= case (let r = partition even (enumFromTo (0 + 1) 2)
in (0 : fst r, snd r)) of

(xs, ys) -> (sum xs, sum ys)
= let r = partition even (enumFromTo (0 + 1) 2)

in (sum (0 : fst r), sum (snd r))
= let r = partition even (enumFromTo (1 + 1) 2)

in (sumAcc 0 (fst r), sum (1 : snd r))

While we are evaluating the first component of the pair, the second
component grows larger . . .
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Equational reasoning
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Equational reasoning
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A better way?

The problematic pattern here is that we are generating

([Int], [Int])

but the generation of the two lists is not independent, and the
distribution is not statically known.

partitionEvenSums :: [Int] -> (Int, Int)
partitionEvenSums = partitionEvenSumsAcc (0, 0)
partitionEvenSumsAcc :: (Int, Int) -> [Int] -> (Int, Int)
partitionEvenSumsAcc (!x, !y) [] = (x, y)
partitionEvenSumsAcc (!x, !y) (z : zs) =
if even z then partitionEvenSumsAcc (x + z, y) zs

else partitionEvenSumsAcc (x, y + z) zs

Well-Typed
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Revisiting the example

example7b :: Int -> (Int, Int)
example7b n = partitionEvenSums [0 .. n]

This works in constant space (but is less modular).

Libraries such as foldl or streamly can help restore modularity here.
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Writer monad

data Writer w a = Writer w a

A similar problem arises here as we have seen for partitioning. For
Writer , it is typically even worse because monadic computations will
often run for a very long time.

Well-Typed



Example 8: effectful traversals



Traversing a list

example8a n = length <$> traverse pure [0 .. n]

Definition of traverse on lists:

traverse :: Applicative f => (a -> f b) -> [a] -> f [b]
traverse _ [] = pure []
traverse f (x : xs) = pure (:) <*> f x <*> traverse f xs

Well-Typed
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What applicative functor?

Does the choice of applicative functor matter?

What about each of

▶ Identity

▶ Maybe

▶ IO
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Identity

example8a :: Int -> Identity Int
newtype Identity a = Identity {runIdentity :: a}
instance Functor Identity where
fmap f x = pure f <*> x

instance Applicative Identity where
pure = Identity
f <*> x = Identity ((runIdentity f) (runIdentity x))

Well-Typed



Equational reasoning

traverse pure (enumFromTo 0 2)
= traverse pure (0 : enumFromTo (0 + 1) 2)
= pure (:) <*> pure 0

<*> traverse pure (enumFromTo (0 + 1) 2)

= Identity (runIdentity (pure (:)) <*> runIdentity (pure 0))
<*> traverse pure (enumFromTo (0 + 1) 2)

= Identity ((:) 0)
<*> traverse pure (enumFromTo (0 + 1) 2)

= Identity
(0 : runIdentity (traverse pure (enumFromTo (0 + 1) 2)))

This looks fine (and it is).

Runs in constant space.
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Equational reasoning
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Equational reasoning

traverse pure (enumFromTo 0 2)
= traverse pure (0 : enumFromTo (0 + 1) 2)
= pure (:) <*> pure 0
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= Identity (runIdentity (pure (:)) <*> runIdentity (pure 0))
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= Identity ((:) 0)
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= Identity
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Maybe

example8b :: Int -> Maybe Int

data Maybe a = Nothing | Just a
instance Functor Maybe where
fmap f x = pure f <*> x

instance Applicative Maybe where
pure = Just
Nothing <*> _ = Nothing
Just _ <*> Nothing = Nothing
Just f <*> Just x = Just (f x)
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Equational reasoning

traverse pure (enumFromTo 0 2)
= traverse pure (0 : enumFromTo (0 + 1) 2)
= pure (:) <*> pure 0

<*> traverse pure (enumFromTo (0 + 1) 2)
= Just (:) <*> Just 0

<*> traverse pure (enumFromTo (0 + 1) 2)
= Just ((:) 0) <*> traverse pure (enumFromTo (0 + 1) 2)

This is looking bad.

Runs in linear space.
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A possible fix

traverseLength :: [a] -> Maybe Int
traverseLength = traverseLengthAcc 0
traverseLengthAcc :: Int -> [a] -> Maybe Int
traverseLengthAcc !acc [] = Just acc
traverseLengthAcc !acc (x : xs) =
pure x *> traverseLengthAcc (1 + acc) xs

Well-Typed



Conclusions
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