
Lazy Evaluation
ZuriHac 2023

Andres Löh
2023-06-11 — Copyright © 2023 Well-Typed LLP

Well-Typed
The Haskell Consultants

About Well-Typed

▶ Well-Typed is a Haskell consultancy company, established in 2008
▶ Team of about 20 Haskell experts
▶ Wide variety of clients

▶ GHC and tooling maintenance, development and support
▶ Haskell software development and consulting
▶ On-site and remote training courses

Well-Typed

GHC support and maintenance

https://well-typed.com/blog/2022/11/funding-ghc-maintenance/

Well-Typed

https://well-typed.com/blog/2022/11/funding-ghc-maintenance/

About me

▶ Using Haskell since about 1997
▶ Studied mathematics in Konstanz, PhD in Computer Science at

Utrecht 2004
▶ At Well-Typed since 2010
▶ Living in Regensburg, Germany

Well-Typed

Haskell Interlude

https://haskell.foundation/podcast/

Well-Typed

https://haskell.foundation/podcast/

Haskell Unfolder

https://www.youtube.com/@well-typed

Next episode on Wednesday, 14 June, on a topic related to this talk!

Well-Typed

https://www.youtube.com/@well-typed

Repository

This presentation and the code samples are available from

https://github.com/well-typed/lazy-evaluation-zurihac-2023

Well-Typed

https://github.com/well-typed/lazy-evaluation-zurihac-2023

The plan

▶ Look at lazy evaluation and try to reason about simple programs.
▶ Build an intuition for lazy evaluation.
▶ Discuss some common pitfalls.

Not:

▶ Complete in any sense.
▶ Dive deep into GHC-specific optimisations.
▶ Learn how to track down space leaks in large code bases.

Well-Typed

The plan

▶ Look at lazy evaluation and try to reason about simple programs.
▶ Build an intuition for lazy evaluation.
▶ Discuss some common pitfalls.

Not:

▶ Complete in any sense.
▶ Dive deep into GHC-specific optimisations.
▶ Learn how to track down space leaks in large code bases.

Well-Typed

Informal introduction

Lazy evaluation

What is lazy evaluation?

▶ evaluate as little as possible, just when needed, and . . .
▶ share computation results if they are needed multiple times.

What is a space leak?

A situation where memory is retained by the program unexpectedly
long.

Well-Typed

Lazy evaluation

What is lazy evaluation?

▶ evaluate as little as possible, just when needed, and . . .

▶ share computation results if they are needed multiple times.

What is a space leak?

A situation where memory is retained by the program unexpectedly
long.

Well-Typed

Lazy evaluation

What is lazy evaluation?

▶ evaluate as little as possible, just when needed, and . . .
▶ share computation results if they are needed multiple times.

What is a space leak?

A situation where memory is retained by the program unexpectedly
long.

Well-Typed

Lazy evaluation

What is lazy evaluation?

▶ evaluate as little as possible, just when needed, and . . .
▶ share computation results if they are needed multiple times.

What is a space leak?

A situation where memory is retained by the program unexpectedly
long.

Well-Typed

Lazy evaluation

What is lazy evaluation?

▶ evaluate as little as possible, just when needed, and . . .
▶ share computation results if they are needed multiple times.

What is a space leak?

A situation where memory is retained by the program unexpectedly
long.

Well-Typed

Lazy evaluation

Why do we evaluate anything at all?

▶ Some result we are interested in creates demand on other results.
▶ Demand is propagated through functions and language

constructs such as case (or more generally pattern matching).

We will try to make these points more precise throughout the lecture.

Well-Typed

Lazy evaluation

Why do we evaluate anything at all?

▶ Some result we are interested in creates demand on other results.
▶ Demand is propagated through functions and language

constructs such as case (or more generally pattern matching).

We will try to make these points more precise throughout the lecture.

Well-Typed

Lazy evaluation

Why do we evaluate anything at all?

▶ Some result we are interested in creates demand on other results.
▶ Demand is propagated through functions and language

constructs such as case (or more generally pattern matching).

We will try to make these points more precise throughout the lecture.

Well-Typed

Example 1: null

A first example

example1 :: Int -> Bool
example1 n = null [0 .. n]

How much space does this use (in terms of n)?

Well-Typed

Looking at definitions

Let’s start with our own definitions.
null :: [a] -> Bool
null [] = True
null (_ : _) = False

enumFromTo :: Int -> Int -> [Int]
enumFromTo l u =
if l > u
then []
else l : enumFromTo (l + 1) u

In Haskell, [m .. n] is syntactic sugar for enumFromTo m n .

Well-Typed

Looking at definitions

Let’s start with our own definitions.
null :: [a] -> Bool
null [] = True
null (_ : _) = False

enumFromTo :: Int -> Int -> [Int]
enumFromTo l u =
if l > u
then []
else l : enumFromTo (l + 1) u

In Haskell, [m .. n] is syntactic sugar for enumFromTo m n .

Well-Typed

Equational reasoning

Let’s assume n = 2 :

null (enumFromTo 0 2)

= null (if 0 > 2 then [] else 0 : enumFromTo (0 + 1) 2)
= null (if False then [] else 0 : enumFromTo (0 + 1) 2)
= null (0 : enumFromTo (0 + 1) 2)
= False

Reduction sequence does not depend on n ,
only on 0 > n being False .

Answer to our original question is constant space (and time).

Well-Typed

Equational reasoning

Let’s assume n = 2 :

null (enumFromTo 0 2)

= null (if 0 > 2 then [] else 0 : enumFromTo (0 + 1) 2)
= null (if False then [] else 0 : enumFromTo (0 + 1) 2)
= null (0 : enumFromTo (0 + 1) 2)
= False

Reduction sequence does not depend on n ,
only on 0 > n being False .

Answer to our original question is constant space (and time).

Well-Typed

Equational reasoning

Let’s assume n = 2 :

null (enumFromTo 0 2)
= null (if 0 > 2 then [] else 0 : enumFromTo (0 + 1) 2)

= null (if False then [] else 0 : enumFromTo (0 + 1) 2)
= null (0 : enumFromTo (0 + 1) 2)
= False

Reduction sequence does not depend on n ,
only on 0 > n being False .

Answer to our original question is constant space (and time).

Well-Typed

Equational reasoning

Let’s assume n = 2 :

null (enumFromTo 0 2)
= null (if 0 > 2 then [] else 0 : enumFromTo (0 + 1) 2)

= null (if False then [] else 0 : enumFromTo (0 + 1) 2)
= null (0 : enumFromTo (0 + 1) 2)
= False

Reduction sequence does not depend on n ,
only on 0 > n being False .

Answer to our original question is constant space (and time).

Well-Typed

Equational reasoning

Let’s assume n = 2 :

null (enumFromTo 0 2)
= null (if 0 > 2 then [] else 0 : enumFromTo (0 + 1) 2)
= null (if False then [] else 0 : enumFromTo (0 + 1) 2)

= null (0 : enumFromTo (0 + 1) 2)
= False

Reduction sequence does not depend on n ,
only on 0 > n being False .

Answer to our original question is constant space (and time).

Well-Typed

Equational reasoning

Let’s assume n = 2 :

null (enumFromTo 0 2)
= null (if 0 > 2 then [] else 0 : enumFromTo (0 + 1) 2)
= null (if False then [] else 0 : enumFromTo (0 + 1) 2)

= null (0 : enumFromTo (0 + 1) 2)
= False

Reduction sequence does not depend on n ,
only on 0 > n being False .

Answer to our original question is constant space (and time).

Well-Typed

Equational reasoning

Let’s assume n = 2 :

null (enumFromTo 0 2)
= null (if 0 > 2 then [] else 0 : enumFromTo (0 + 1) 2)
= null (if False then [] else 0 : enumFromTo (0 + 1) 2)
= null (0 : enumFromTo (0 + 1) 2)

= False

Reduction sequence does not depend on n ,
only on 0 > n being False .

Answer to our original question is constant space (and time).

Well-Typed

Equational reasoning

Let’s assume n = 2 :

null (enumFromTo 0 2)
= null (if 0 > 2 then [] else 0 : enumFromTo (0 + 1) 2)
= null (if False then [] else 0 : enumFromTo (0 + 1) 2)
= null (0 : enumFromTo (0 + 1) 2)

= False

Reduction sequence does not depend on n ,
only on 0 > n being False .

Answer to our original question is constant space (and time).

Well-Typed

Equational reasoning

Let’s assume n = 2 :

null (enumFromTo 0 2)
= null (if 0 > 2 then [] else 0 : enumFromTo (0 + 1) 2)
= null (if False then [] else 0 : enumFromTo (0 + 1) 2)
= null (0 : enumFromTo (0 + 1) 2)
= False

Reduction sequence does not depend on n ,
only on 0 > n being False .

Answer to our original question is constant space (and time).

Well-Typed

Equational reasoning

Let’s assume n = 2 :

null (enumFromTo 0 2)
= null (if 0 > 2 then [] else 0 : enumFromTo (0 + 1) 2)
= null (if False then [] else 0 : enumFromTo (0 + 1) 2)
= null (0 : enumFromTo (0 + 1) 2)
= False

Reduction sequence does not depend on n ,
only on 0 > n being False .

Answer to our original question is constant space (and time).

Well-Typed

Equational reasoning

Let’s assume n = 2 :

null (enumFromTo 0 2)
= null (if 0 > 2 then [] else 0 : enumFromTo (0 + 1) 2)
= null (if False then [] else 0 : enumFromTo (0 + 1) 2)
= null (0 : enumFromTo (0 + 1) 2)
= False

Reduction sequence does not depend on n ,
only on 0 > n being False .

Answer to our original question is constant space (and time).

Well-Typed

Redexes

null (0 : enumFromTo (0 + 1) 2)

We generally have more than one redex (reducible expression).

One aspect of lazy evaluation is that we are generally choosing the
outermost redex.

Well-Typed

Redexes

null (0 : enumFromTo (0 + 1) 2)

We generally have more than one redex (reducible expression).

One aspect of lazy evaluation is that we are generally choosing the
outermost redex.

Well-Typed

Redexes

null (0 : enumFromTo (0 + 1) 2)

We generally have more than one redex (reducible expression).

One aspect of lazy evaluation is that we are generally choosing the
outermost redex.

Well-Typed

Redexes

null (0 : enumFromTo (0 + 1) 2)

We generally have more than one redex (reducible expression).

One aspect of lazy evaluation is that we are generally choosing the
outermost redex.

Well-Typed

Redexes

null (0 : enumFromTo (0 + 1) 2)

We generally have more than one redex (reducible expression).

One aspect of lazy evaluation is that we are generally choosing the
outermost redex.

Well-Typed

Lightweight measuring

▶ Write the program.
▶ Run with different inputs (for n) and observe memory

consumption.
▶ Use GHC RTS flags to get helpful info about memory use.

Well-Typed

Demand?

Why does anything happen at all?

▶ We want to print the resulting Bool .
▶ In order to print it, we have to know it.
▶ So we have to evaluate the call to null .
▶ Why can’t we reduce null (enumFromTo 0 2) directly?

Well-Typed

Demand?

Why does anything happen at all?

▶ We want to print the resulting Bool .

▶ In order to print it, we have to know it.
▶ So we have to evaluate the call to null .
▶ Why can’t we reduce null (enumFromTo 0 2) directly?

Well-Typed

Demand?

Why does anything happen at all?

▶ We want to print the resulting Bool .
▶ In order to print it, we have to know it.

▶ So we have to evaluate the call to null .
▶ Why can’t we reduce null (enumFromTo 0 2) directly?

Well-Typed

Demand?

Why does anything happen at all?

▶ We want to print the resulting Bool .
▶ In order to print it, we have to know it.
▶ So we have to evaluate the call to null .

▶ Why can’t we reduce null (enumFromTo 0 2) directly?

Well-Typed

Demand?

Why does anything happen at all?

▶ We want to print the resulting Bool .
▶ In order to print it, we have to know it.
▶ So we have to evaluate the call to null .
▶ Why can’t we reduce null (enumFromTo 0 2) directly?

Well-Typed

Pattern matching

null :: [a] -> Bool
null [] = True
null (_ : _) = False

The pattern match on the input drives evaluation, i.e., it propagates
demand.

Well-Typed

Just enough evaluation

As can be observed by the reduction

null (0 : enumFromTo (0 + 1) 2)
= False

revealing the top-level constructor is sufficient to reduce null .

An expression is in weak head-normal form (WHNF) if it is a
constructor application (or a lambda).

Intuitively, if any evaluation is needed at all, then evaluating up to weak
head-normal form is the least amount of evaluation that can enable
new reduction opportunities.

Well-Typed

Just enough evaluation

As can be observed by the reduction

null (0 : enumFromTo (0 + 1) 2)
= False

revealing the top-level constructor is sufficient to reduce null .

An expression is in weak head-normal form (WHNF) if it is a
constructor application (or a lambda).

Intuitively, if any evaluation is needed at all, then evaluating up to weak
head-normal form is the least amount of evaluation that can enable
new reduction opportunities.

Well-Typed

Just enough evaluation

As can be observed by the reduction

null (0 : enumFromTo (0 + 1) 2)
= False

revealing the top-level constructor is sufficient to reduce null .

An expression is in weak head-normal form (WHNF) if it is a
constructor application (or a lambda).

Intuitively, if any evaluation is needed at all, then evaluating up to weak
head-normal form is the least amount of evaluation that can enable
new reduction opportunities.

Well-Typed

How much evaluation?

So what about each of the following?
null (repeat 1)
null undefined
null (1 : undefined)
null (undefined : undefined)
null (let x = x in x)

Well-Typed

Aside: strict functions

A function f is called strict if and only if f ⊥ = ⊥ .

(Here, ⊥ is a special value that subsumes anything that crashes or
loops, e.g. undefined .)

Good:

Strictness is defined in terms of a function’s behaviour, not its
implementation.

Not so good:

Some implications of the definition might be unintuitive.

The notion is not very precise, because there are “various degrees of
strictness”.

Well-Typed

Aside: strict functions

A function f is called strict if and only if f ⊥ = ⊥ .

(Here, ⊥ is a special value that subsumes anything that crashes or
loops, e.g. undefined .)

Good:

Strictness is defined in terms of a function’s behaviour, not its
implementation.

Not so good:

Some implications of the definition might be unintuitive.

The notion is not very precise, because there are “various degrees of
strictness”.

Well-Typed

Aside: strict functions

A function f is called strict if and only if f ⊥ = ⊥ .

(Here, ⊥ is a special value that subsumes anything that crashes or
loops, e.g. undefined .)

Good:

Strictness is defined in terms of a function’s behaviour, not its
implementation.

Not so good:

Some implications of the definition might be unintuitive.

The notion is not very precise, because there are “various degrees of
strictness”.

Well-Typed

Examples

Is null strict?

Yes!
GHCi> null undefined
*** Exception: Prelude.undefined

Well-Typed

Examples

Is null strict?

Yes!
GHCi> null undefined
*** Exception: Prelude.undefined

Well-Typed

Examples

What is an example of a non-strict function?

constZero :: a -> Int
constZero _ = 0

GHCi> constZero undefined
0

Well-Typed

Examples

What is an example of a non-strict function?

constZero :: a -> Int
constZero _ = 0

GHCi> constZero undefined
0

Well-Typed

Examples

What is an example of a non-strict function?

constZero :: a -> Int
constZero _ = 0

GHCi> constZero undefined
0

Well-Typed

Identity

id :: a -> a
id x = x

Is id strict?

Yes!
GHCi> id undefined
*** Exception: Prelude.undefined

Note that id propagates demand on the result to demand on its
argument.

Well-Typed

Identity

id :: a -> a
id x = x

Is id strict?

Yes!
GHCi> id undefined
*** Exception: Prelude.undefined

Note that id propagates demand on the result to demand on its
argument.

Well-Typed

Identity

id :: a -> a
id x = x

Is id strict?

Yes!
GHCi> id undefined
*** Exception: Prelude.undefined

Note that id propagates demand on the result to demand on its
argument.

Well-Typed

Another corner case

constError :: a -> b
constError _ = undefined

This function is also strict.

Well-Typed

Example 2: null via equality

Changed definition of null

nullViaEq xs = xs == []
example2 :: Int -> Bool
example2 n = nullViaEq [0 .. n]

Does this change anything?

Well-Typed

Definition of equality on lists

instance Eq a => Eq [a] where
[] == [] = True
(x : xs) == (y : ys) = x == y && xs == ys
_xs == _ys = False

Well-Typed

Equational reasoning

nullViaEq (enumFromTo 0 2)

= enumFromTo 0 2 == []
= (if 0 > 2 then [] else 0 : enumFromTo (0 + 1) 2) == []
= (if False then [] else 0 : enumFromTo (0 + 1) 2) == []
= (0 : enumFromTo (0 + 1) 2) == []
= False

Reduction steps change, but still independent of n .

Still constant space (and time).

Well-Typed

Equational reasoning

nullViaEq (enumFromTo 0 2)

= enumFromTo 0 2 == []
= (if 0 > 2 then [] else 0 : enumFromTo (0 + 1) 2) == []
= (if False then [] else 0 : enumFromTo (0 + 1) 2) == []
= (0 : enumFromTo (0 + 1) 2) == []
= False

Reduction steps change, but still independent of n .

Still constant space (and time).

Well-Typed

Equational reasoning

nullViaEq (enumFromTo 0 2)
= enumFromTo 0 2 == []

= (if 0 > 2 then [] else 0 : enumFromTo (0 + 1) 2) == []
= (if False then [] else 0 : enumFromTo (0 + 1) 2) == []
= (0 : enumFromTo (0 + 1) 2) == []
= False

Reduction steps change, but still independent of n .

Still constant space (and time).

Well-Typed

Equational reasoning

nullViaEq (enumFromTo 0 2)
= enumFromTo 0 2 == []

= (if 0 > 2 then [] else 0 : enumFromTo (0 + 1) 2) == []
= (if False then [] else 0 : enumFromTo (0 + 1) 2) == []
= (0 : enumFromTo (0 + 1) 2) == []
= False

Reduction steps change, but still independent of n .

Still constant space (and time).

Well-Typed

Equational reasoning

nullViaEq (enumFromTo 0 2)
= enumFromTo 0 2 == []
= (if 0 > 2 then [] else 0 : enumFromTo (0 + 1) 2) == []

= (if False then [] else 0 : enumFromTo (0 + 1) 2) == []
= (0 : enumFromTo (0 + 1) 2) == []
= False

Reduction steps change, but still independent of n .

Still constant space (and time).

Well-Typed

Equational reasoning

nullViaEq (enumFromTo 0 2)
= enumFromTo 0 2 == []
= (if 0 > 2 then [] else 0 : enumFromTo (0 + 1) 2) == []

= (if False then [] else 0 : enumFromTo (0 + 1) 2) == []
= (0 : enumFromTo (0 + 1) 2) == []
= False

Reduction steps change, but still independent of n .

Still constant space (and time).

Well-Typed

Equational reasoning

nullViaEq (enumFromTo 0 2)
= enumFromTo 0 2 == []
= (if 0 > 2 then [] else 0 : enumFromTo (0 + 1) 2) == []
= (if False then [] else 0 : enumFromTo (0 + 1) 2) == []

= (0 : enumFromTo (0 + 1) 2) == []
= False

Reduction steps change, but still independent of n .

Still constant space (and time).

Well-Typed

Equational reasoning

nullViaEq (enumFromTo 0 2)
= enumFromTo 0 2 == []
= (if 0 > 2 then [] else 0 : enumFromTo (0 + 1) 2) == []
= (if False then [] else 0 : enumFromTo (0 + 1) 2) == []

= (0 : enumFromTo (0 + 1) 2) == []
= False

Reduction steps change, but still independent of n .

Still constant space (and time).

Well-Typed

Equational reasoning

nullViaEq (enumFromTo 0 2)
= enumFromTo 0 2 == []
= (if 0 > 2 then [] else 0 : enumFromTo (0 + 1) 2) == []
= (if False then [] else 0 : enumFromTo (0 + 1) 2) == []
= (0 : enumFromTo (0 + 1) 2) == []

= False

Reduction steps change, but still independent of n .

Still constant space (and time).

Well-Typed

Equational reasoning

nullViaEq (enumFromTo 0 2)
= enumFromTo 0 2 == []
= (if 0 > 2 then [] else 0 : enumFromTo (0 + 1) 2) == []
= (if False then [] else 0 : enumFromTo (0 + 1) 2) == []
= (0 : enumFromTo (0 + 1) 2) == []

= False

Reduction steps change, but still independent of n .

Still constant space (and time).

Well-Typed

Equational reasoning

nullViaEq (enumFromTo 0 2)
= enumFromTo 0 2 == []
= (if 0 > 2 then [] else 0 : enumFromTo (0 + 1) 2) == []
= (if False then [] else 0 : enumFromTo (0 + 1) 2) == []
= (0 : enumFromTo (0 + 1) 2) == []
= False

Reduction steps change, but still independent of n .

Still constant space (and time).

Well-Typed

Equational reasoning

nullViaEq (enumFromTo 0 2)
= enumFromTo 0 2 == []
= (if 0 > 2 then [] else 0 : enumFromTo (0 + 1) 2) == []
= (if False then [] else 0 : enumFromTo (0 + 1) 2) == []
= (0 : enumFromTo (0 + 1) 2) == []
= False

Reduction steps change, but still independent of n .

Still constant space (and time).

Well-Typed

Aside: which definition is better?

Which of the two definitions of null is better?

The function nullViaEq has an unnecessarily restrictive type:

nullViaEq :: Eq a => [a] -> Bool

Well-Typed

Aside: which definition is better?

Which of the two definitions of null is better?

The function nullViaEq has an unnecessarily restrictive type:

nullViaEq :: Eq a => [a] -> Bool

Well-Typed

Example 3: self equality

Comparing a list to itself

selfEqual :: Eq a => a -> Bool
selfEqual x = x == x

example3 :: Int -> Bool
example3 n = selfEqual [0 .. n]

We are once again interested in the space behaviour.

Well-Typed

Equational reasoning

This is where sharing comes into play:
selfEqual (enumFromTo 0 2)

= let x = enumFromTo 0 2 in x == x
= let x = 0 : enumFromTo (0 + 1) 2 in x == x
= let x = 0 : x'; x' = enumFromTo (0 + 1) 2 in x == x
= let x = 0 : x'; x' = enumFromTo (0 + 1) 2

in 0 == 0 && x' == x'
= let x' = enumFromTo (0 + 1) 2 in 0 == 0 && x' == x'
= let x' = enumFromTo (0 + 1) 2 in True && x' == x'
= let x' = enumFromTo (0 + 1) 2 in x' == x'
= ...
= True

Linear time, but constant space.

Well-Typed

Equational reasoning

This is where sharing comes into play:
selfEqual (enumFromTo 0 2)

= let x = enumFromTo 0 2 in x == x
= let x = 0 : enumFromTo (0 + 1) 2 in x == x
= let x = 0 : x'; x' = enumFromTo (0 + 1) 2 in x == x
= let x = 0 : x'; x' = enumFromTo (0 + 1) 2

in 0 == 0 && x' == x'
= let x' = enumFromTo (0 + 1) 2 in 0 == 0 && x' == x'
= let x' = enumFromTo (0 + 1) 2 in True && x' == x'
= let x' = enumFromTo (0 + 1) 2 in x' == x'
= ...
= True

Linear time, but constant space.

Well-Typed

Equational reasoning

This is where sharing comes into play:
selfEqual (enumFromTo 0 2)

= let x = enumFromTo 0 2 in x == x

= let x = 0 : enumFromTo (0 + 1) 2 in x == x
= let x = 0 : x'; x' = enumFromTo (0 + 1) 2 in x == x
= let x = 0 : x'; x' = enumFromTo (0 + 1) 2

in 0 == 0 && x' == x'
= let x' = enumFromTo (0 + 1) 2 in 0 == 0 && x' == x'
= let x' = enumFromTo (0 + 1) 2 in True && x' == x'
= let x' = enumFromTo (0 + 1) 2 in x' == x'
= ...
= True

Linear time, but constant space.

Well-Typed

Equational reasoning

This is where sharing comes into play:
selfEqual (enumFromTo 0 2)

= let x = enumFromTo 0 2 in x == x

= let x = 0 : enumFromTo (0 + 1) 2 in x == x
= let x = 0 : x'; x' = enumFromTo (0 + 1) 2 in x == x
= let x = 0 : x'; x' = enumFromTo (0 + 1) 2

in 0 == 0 && x' == x'
= let x' = enumFromTo (0 + 1) 2 in 0 == 0 && x' == x'
= let x' = enumFromTo (0 + 1) 2 in True && x' == x'
= let x' = enumFromTo (0 + 1) 2 in x' == x'
= ...
= True

Linear time, but constant space.

Well-Typed

Equational reasoning

This is where sharing comes into play:
selfEqual (enumFromTo 0 2)

= let x = enumFromTo 0 2 in x == x
= let x = 0 : enumFromTo (0 + 1) 2 in x == x

= let x = 0 : x'; x' = enumFromTo (0 + 1) 2 in x == x
= let x = 0 : x'; x' = enumFromTo (0 + 1) 2

in 0 == 0 && x' == x'
= let x' = enumFromTo (0 + 1) 2 in 0 == 0 && x' == x'
= let x' = enumFromTo (0 + 1) 2 in True && x' == x'
= let x' = enumFromTo (0 + 1) 2 in x' == x'
= ...
= True

Linear time, but constant space.

Well-Typed

Equational reasoning

This is where sharing comes into play:
selfEqual (enumFromTo 0 2)

= let x = enumFromTo 0 2 in x == x
= let x = 0 : enumFromTo (0 + 1) 2 in x == x
= let x = 0 : x'; x' = enumFromTo (0 + 1) 2 in x == x

= let x = 0 : x'; x' = enumFromTo (0 + 1) 2
in 0 == 0 && x' == x'

= let x' = enumFromTo (0 + 1) 2 in 0 == 0 && x' == x'
= let x' = enumFromTo (0 + 1) 2 in True && x' == x'
= let x' = enumFromTo (0 + 1) 2 in x' == x'
= ...
= True

Linear time, but constant space.

Well-Typed

Equational reasoning

This is where sharing comes into play:
selfEqual (enumFromTo 0 2)

= let x = enumFromTo 0 2 in x == x
= let x = 0 : enumFromTo (0 + 1) 2 in x == x
= let x = 0 : x'; x' = enumFromTo (0 + 1) 2 in x == x

= let x = 0 : x'; x' = enumFromTo (0 + 1) 2
in 0 == 0 && x' == x'

= let x' = enumFromTo (0 + 1) 2 in 0 == 0 && x' == x'
= let x' = enumFromTo (0 + 1) 2 in True && x' == x'
= let x' = enumFromTo (0 + 1) 2 in x' == x'
= ...
= True

Linear time, but constant space.

Well-Typed

Equational reasoning

This is where sharing comes into play:
selfEqual (enumFromTo 0 2)

= let x = enumFromTo 0 2 in x == x
= let x = 0 : enumFromTo (0 + 1) 2 in x == x
= let x = 0 : x'; x' = enumFromTo (0 + 1) 2 in x == x
= let x = 0 : x'; x' = enumFromTo (0 + 1) 2

in 0 == 0 && x' == x'

= let x' = enumFromTo (0 + 1) 2 in 0 == 0 && x' == x'
= let x' = enumFromTo (0 + 1) 2 in True && x' == x'
= let x' = enumFromTo (0 + 1) 2 in x' == x'
= ...
= True

Linear time, but constant space.

Well-Typed

Equational reasoning

This is where sharing comes into play:
selfEqual (enumFromTo 0 2)

= let x = enumFromTo 0 2 in x == x
= let x = 0 : enumFromTo (0 + 1) 2 in x == x
= let x = 0 : x'; x' = enumFromTo (0 + 1) 2 in x == x
= let x = 0 : x'; x' = enumFromTo (0 + 1) 2

in 0 == 0 && x' == x'
= let x' = enumFromTo (0 + 1) 2 in 0 == 0 && x' == x'

= let x' = enumFromTo (0 + 1) 2 in True && x' == x'
= let x' = enumFromTo (0 + 1) 2 in x' == x'
= ...
= True

Linear time, but constant space.

Well-Typed

Equational reasoning

This is where sharing comes into play:
selfEqual (enumFromTo 0 2)

= let x = enumFromTo 0 2 in x == x
= let x = 0 : enumFromTo (0 + 1) 2 in x == x
= let x = 0 : x'; x' = enumFromTo (0 + 1) 2 in x == x
= let x = 0 : x'; x' = enumFromTo (0 + 1) 2

in 0 == 0 && x' == x'
= let x' = enumFromTo (0 + 1) 2 in 0 == 0 && x' == x'

= let x' = enumFromTo (0 + 1) 2 in True && x' == x'
= let x' = enumFromTo (0 + 1) 2 in x' == x'
= ...
= True

Linear time, but constant space.

Well-Typed

Equational reasoning

This is where sharing comes into play:
selfEqual (enumFromTo 0 2)

= let x = enumFromTo 0 2 in x == x
= let x = 0 : enumFromTo (0 + 1) 2 in x == x
= let x = 0 : x'; x' = enumFromTo (0 + 1) 2 in x == x
= let x = 0 : x'; x' = enumFromTo (0 + 1) 2

in 0 == 0 && x' == x'
= let x' = enumFromTo (0 + 1) 2 in 0 == 0 && x' == x'
= let x' = enumFromTo (0 + 1) 2 in True && x' == x'

= let x' = enumFromTo (0 + 1) 2 in x' == x'
= ...
= True

Linear time, but constant space.

Well-Typed

Equational reasoning

This is where sharing comes into play:
selfEqual (enumFromTo 0 2)

= let x = enumFromTo 0 2 in x == x
= let x = 0 : enumFromTo (0 + 1) 2 in x == x
= let x = 0 : x'; x' = enumFromTo (0 + 1) 2 in x == x
= let x = 0 : x'; x' = enumFromTo (0 + 1) 2

in 0 == 0 && x' == x'
= let x' = enumFromTo (0 + 1) 2 in 0 == 0 && x' == x'
= let x' = enumFromTo (0 + 1) 2 in True && x' == x'

= let x' = enumFromTo (0 + 1) 2 in x' == x'
= ...
= True

Linear time, but constant space.

Well-Typed

Equational reasoning

This is where sharing comes into play:
selfEqual (enumFromTo 0 2)

= let x = enumFromTo 0 2 in x == x
= let x = 0 : enumFromTo (0 + 1) 2 in x == x
= let x = 0 : x'; x' = enumFromTo (0 + 1) 2 in x == x
= let x = 0 : x'; x' = enumFromTo (0 + 1) 2

in 0 == 0 && x' == x'
= let x' = enumFromTo (0 + 1) 2 in 0 == 0 && x' == x'
= let x' = enumFromTo (0 + 1) 2 in True && x' == x'
= let x' = enumFromTo (0 + 1) 2 in x' == x'

= ...
= True

Linear time, but constant space.

Well-Typed

Equational reasoning

This is where sharing comes into play:
selfEqual (enumFromTo 0 2)

= let x = enumFromTo 0 2 in x == x
= let x = 0 : enumFromTo (0 + 1) 2 in x == x
= let x = 0 : x'; x' = enumFromTo (0 + 1) 2 in x == x
= let x = 0 : x'; x' = enumFromTo (0 + 1) 2

in 0 == 0 && x' == x'
= let x' = enumFromTo (0 + 1) 2 in 0 == 0 && x' == x'
= let x' = enumFromTo (0 + 1) 2 in True && x' == x'
= let x' = enumFromTo (0 + 1) 2 in x' == x'
= ...
= True

Linear time, but constant space.

Well-Typed

Top-level sharing

A somewhat special case is sharing introduced at the top-level.

fib :: Int -> Int
fib 0 = 0
fib 1 = 1
fib n = fib (n - 1) + fib (n - 2)
expensive :: Int
expensive = fib 32

Sometimes referred to as CAF (constant applicative form).

Can be immensely useful, but the lifetime of such an expression is
potentially the entire run of the program.

Well-Typed

Top-level sharing

A somewhat special case is sharing introduced at the top-level.

fib :: Int -> Int
fib 0 = 0
fib 1 = 1
fib n = fib (n - 1) + fib (n - 2)
expensive :: Int
expensive = fib 32

Sometimes referred to as CAF (constant applicative form).

Can be immensely useful, but the lifetime of such an expression is
potentially the entire run of the program.

Well-Typed

Top-level sharing

A somewhat special case is sharing introduced at the top-level.

fib :: Int -> Int
fib 0 = 0
fib 1 = 1
fib n = fib (n - 1) + fib (n - 2)
expensive :: Int
expensive = fib 32

Sometimes referred to as CAF (constant applicative form).

Can be immensely useful, but the lifetime of such an expression is
potentially the entire run of the program.

Well-Typed

Lightweight inspection

GHCi> x = [0 .. 2] :: [Int]
GHCi> :sprint x
x = _
GHCi> null x
False
GHCi> :sprint x
x = 0 : _

There is also :print which shows slightly more information.

Neither command works with cyclic structures. There are other tools
such as ghc-heap-view or ghc-debug that are needed for inspecting
those.

Well-Typed

Lightweight inspection

GHCi> x = [0 .. 2] :: [Int]
GHCi> :sprint x
x = _
GHCi> null x
False
GHCi> :sprint x
x = 0 : _

There is also :print which shows slightly more information.

Neither command works with cyclic structures. There are other tools
such as ghc-heap-view or ghc-debug that are needed for inspecting
those.

Well-Typed

Example 4: map vs. reverse

Building a pipeline

example4a :: Int -> Bool
example4a n = null (map (<= 10) [0 .. n])

The new aspect compared to earlier examples is the addition of map
in the middle of the pipeline – does it change anything?

Well-Typed

Definition of map

map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x : xs) = f x : map f xs

Well-Typed

Equational reasoning

null (map (<= 10) (enumFromTo 0 2))

= null (map (<= 10) (0 : enumFromTo (0 + 1) 2))
= null ((0 <= 10) : map (<= 10) enumFromTo (0 + 1) 2)
= False

Still constant space (and time).

Well-Typed

Equational reasoning

null (map (<= 10) (enumFromTo 0 2))

= null (map (<= 10) (0 : enumFromTo (0 + 1) 2))
= null ((0 <= 10) : map (<= 10) enumFromTo (0 + 1) 2)
= False

Still constant space (and time).

Well-Typed

Equational reasoning

null (map (<= 10) (enumFromTo 0 2))
= null (map (<= 10) (0 : enumFromTo (0 + 1) 2))

= null ((0 <= 10) : map (<= 10) enumFromTo (0 + 1) 2)
= False

Still constant space (and time).

Well-Typed

Equational reasoning

null (map (<= 10) (enumFromTo 0 2))
= null (map (<= 10) (0 : enumFromTo (0 + 1) 2))

= null ((0 <= 10) : map (<= 10) enumFromTo (0 + 1) 2)
= False

Still constant space (and time).

Well-Typed

Equational reasoning

null (map (<= 10) (enumFromTo 0 2))
= null (map (<= 10) (0 : enumFromTo (0 + 1) 2))
= null ((0 <= 10) : map (<= 10) enumFromTo (0 + 1) 2)

= False

Still constant space (and time).

Well-Typed

Equational reasoning

null (map (<= 10) (enumFromTo 0 2))
= null (map (<= 10) (0 : enumFromTo (0 + 1) 2))
= null ((0 <= 10) : map (<= 10) enumFromTo (0 + 1) 2)

= False

Still constant space (and time).

Well-Typed

Equational reasoning

null (map (<= 10) (enumFromTo 0 2))
= null (map (<= 10) (0 : enumFromTo (0 + 1) 2))
= null ((0 <= 10) : map (<= 10) enumFromTo (0 + 1) 2)
= False

Still constant space (and time).

Well-Typed

Equational reasoning

null (map (<= 10) (enumFromTo 0 2))
= null (map (<= 10) (0 : enumFromTo (0 + 1) 2))
= null ((0 <= 10) : map (<= 10) enumFromTo (0 + 1) 2)
= False

Still constant space (and time).

Well-Typed

Adding a different function

example4b :: Int -> Bool
example4b n = null (reverse [0 .. n])

Well-Typed

Definition of reverse

reverse :: [a] -> [a]
reverse = reverseAcc []
reverseAcc :: [a] -> [a] -> [a]
reverseAcc acc [] = acc
reverseAcc acc (x : xs) = reverseAcc (x : acc) xs

Well-Typed

Equational reasoning

null (reverse (enumFromTo 0 2))
= null (reverseAcc [] (enumFromTo 0 2))
= null (reverseAcc [] (0 : enumFromTo (0 + 1) 2))
= null (reverseAcc (0 : []) (enumFromTo (0 + 1) 2))

= null (reverseAcc (0 : []) (1 : enumFromTo (1 + 1) 2))
= null (reverseAcc (1 : 0 : []) (enumFromTo (1 + 1) 2))
= null (reverseAcc (1 : 0 : []) (2 : enumFromTo (2 + 1) 2))
= null (reverseAcc (2 : 1 : 0 : []) (enumFromTo (2 + 1) 2))
= null (reverseAcc (2 : 1 : 0 : []) [])
= null (2 : 1 : 0 : [])
= False

This operates in linear space (and time).

Well-Typed

Equational reasoning

null (reverse (enumFromTo 0 2))
= null (reverseAcc [] (enumFromTo 0 2))
= null (reverseAcc [] (0 : enumFromTo (0 + 1) 2))
= null (reverseAcc (0 : []) (enumFromTo (0 + 1) 2))
= null (reverseAcc (0 : []) (1 : enumFromTo (1 + 1) 2))
= null (reverseAcc (1 : 0 : []) (enumFromTo (1 + 1) 2))
= null (reverseAcc (1 : 0 : []) (2 : enumFromTo (2 + 1) 2))
= null (reverseAcc (2 : 1 : 0 : []) (enumFromTo (2 + 1) 2))
= null (reverseAcc (2 : 1 : 0 : []) [])
= null (2 : 1 : 0 : [])
= False

This operates in linear space (and time).

Well-Typed

Equational reasoning

null (reverse (enumFromTo 0 2))
= null (reverseAcc [] (enumFromTo 0 2))
= null (reverseAcc [] (0 : enumFromTo (0 + 1) 2))
= null (reverseAcc (0 : []) (enumFromTo (0 + 1) 2))
= null (reverseAcc (0 : []) (1 : enumFromTo (1 + 1) 2))
= null (reverseAcc (1 : 0 : []) (enumFromTo (1 + 1) 2))
= null (reverseAcc (1 : 0 : []) (2 : enumFromTo (2 + 1) 2))
= null (reverseAcc (2 : 1 : 0 : []) (enumFromTo (2 + 1) 2))
= null (reverseAcc (2 : 1 : 0 : []) [])
= null (2 : 1 : 0 : [])
= False

This operates in linear space (and time).

Well-Typed

Comparing map and reverse

What is the key difference between map and reverse ?

The function map is incremental, while reverse is not.

More precisely:

▶ for map , we only need to evaluate the input list as far as we want
to evaluate the output list.

▶ for reverse , even for just evaluating the result list to WHNF, we
have to evaluate the entire spine of the input list.

Incrementality is not precisely defined, but I am calling functions
incremental that can produce (parts of) their output without evaluating
all of their input.

Well-Typed

Comparing map and reverse

What is the key difference between map and reverse ?

The function map is incremental, while reverse is not.

More precisely:

▶ for map , we only need to evaluate the input list as far as we want
to evaluate the output list.

▶ for reverse , even for just evaluating the result list to WHNF, we
have to evaluate the entire spine of the input list.

Incrementality is not precisely defined, but I am calling functions
incremental that can produce (parts of) their output without evaluating
all of their input.

Well-Typed

Comparing map and reverse

What is the key difference between map and reverse ?

The function map is incremental, while reverse is not.

More precisely:

▶ for map , we only need to evaluate the input list as far as we want
to evaluate the output list.

▶ for reverse , even for just evaluating the result list to WHNF, we
have to evaluate the entire spine of the input list.

Incrementality is not precisely defined, but I am calling functions
incremental that can produce (parts of) their output without evaluating
all of their input.

Well-Typed

Comparing map and reverse

What is the key difference between map and reverse ?

The function map is incremental, while reverse is not.

More precisely:

▶ for map , we only need to evaluate the input list as far as we want
to evaluate the output list.

▶ for reverse , even for just evaluating the result list to WHNF, we
have to evaluate the entire spine of the input list.

Incrementality is not precisely defined, but I am calling functions
incremental that can produce (parts of) their output without evaluating
all of their input.

Well-Typed

Incrementality

Which of the following functions are (or should be) incremental?
map f
reverse

filter p
length
sum
and
take n
drop n

Well-Typed

Incrementality

Which of the following functions are (or should be) incremental?
map f
reverse
filter p

length
sum
and
take n
drop n

Well-Typed

Incrementality

Which of the following functions are (or should be) incremental?
map f
reverse
filter p
length

sum
and
take n
drop n

Well-Typed

Incrementality

Which of the following functions are (or should be) incremental?
map f
reverse
filter p
length
sum

and
take n
drop n

Well-Typed

Incrementality

Which of the following functions are (or should be) incremental?
map f
reverse
filter p
length
sum
and

take n
drop n

Well-Typed

Incrementality

Which of the following functions are (or should be) incremental?
map f
reverse
filter p
length
sum
and
take n

drop n

Well-Typed

Incrementality

Which of the following functions are (or should be) incremental?
map f
reverse
filter p
length
sum
and
take n
drop n

Well-Typed

Example 5: length

Changing the definition of null once more

nullViaLength :: [a] -> Bool
nullViaLength xs = length xs == 0
example5a :: Int -> Bool
example5a n = nullViaLength [0 .. n]

How does this compare to the other definitions of null ?

Well-Typed

A simpler example

Let us just look at length itself:

example5b :: Int -> Int
example5b n = length [0 .. n]

What is the space behaviour?

Well-Typed

Definition(s) of length

A (naive) definition of length is bad:

length :: [a] -> Int
length [] = 0
length (_ : xs) = 1 + length xs

Well-Typed

Equational reasoning

length (enumFromTo 0 2)
= length (0 : enumFromTo (0 + 1) 2)
= 1 + length (enumFromTo (0 + 1) 2)

= 1 + length (1 : enumFromTo (1 + 1) 2)
= 1 + (1 + (length (enumFromTo (1 + 1) 2)))
= ...
= 1 + (1 + (1 + 0))
= ...
= 3

Runs in linear space.

Well-Typed

Equational reasoning

length (enumFromTo 0 2)
= length (0 : enumFromTo (0 + 1) 2)
= 1 + length (enumFromTo (0 + 1) 2)
= 1 + length (1 : enumFromTo (1 + 1) 2)
= 1 + (1 + (length (enumFromTo (1 + 1) 2)))

= ...
= 1 + (1 + (1 + 0))
= ...
= 3

Runs in linear space.

Well-Typed

Equational reasoning

length (enumFromTo 0 2)
= length (0 : enumFromTo (0 + 1) 2)
= 1 + length (enumFromTo (0 + 1) 2)
= 1 + length (1 : enumFromTo (1 + 1) 2)
= 1 + (1 + (length (enumFromTo (1 + 1) 2)))
= ...
= 1 + (1 + (1 + 0))
= ...
= 3

Runs in linear space.

Well-Typed

Equational reasoning

length (enumFromTo 0 2)
= length (0 : enumFromTo (0 + 1) 2)
= 1 + length (enumFromTo (0 + 1) 2)
= 1 + length (1 : enumFromTo (1 + 1) 2)
= 1 + (1 + (length (enumFromTo (1 + 1) 2)))
= ...
= 1 + (1 + (1 + 0))
= ...
= 3

Runs in linear space.

Well-Typed

Definition(s) of length

An accumulating definition of length is potentially not much better:

length :: [a] -> Int
length = lengthAcc 0
lengthAcc :: Int -> [a] -> Int
lengthAcc acc [] = acc
lengthAcc acc (_ : xs) = lengthAcc (1 + acc) xs

Well-Typed

Equational reasoning

length (enumFromTo 0 2)
= lengthAcc 0 (enumFromTo 0 2)
= lengthAcc 0 (0 : enumFromTo (0 + 1) 2)
= lengthAcc (1 + 0) (enumFromTo (0 + 1) 2)

= lengthAcc (1 + 0) (1 : enumFromTo (1 + 1) 2)
= lengthAcc (1 + (1 + 0)) (enumFromTo (1 + 1) 2)
...
= lengthAcc (1 + (1 + (1 + 0))) []
= 1 + (1 + (1 + 0))
= ...
= 3

Also runs in linear space.

Well-Typed

Equational reasoning

length (enumFromTo 0 2)
= lengthAcc 0 (enumFromTo 0 2)
= lengthAcc 0 (0 : enumFromTo (0 + 1) 2)
= lengthAcc (1 + 0) (enumFromTo (0 + 1) 2)
= lengthAcc (1 + 0) (1 : enumFromTo (1 + 1) 2)
= lengthAcc (1 + (1 + 0)) (enumFromTo (1 + 1) 2)

...
= lengthAcc (1 + (1 + (1 + 0))) []
= 1 + (1 + (1 + 0))
= ...
= 3

Also runs in linear space.

Well-Typed

Equational reasoning

length (enumFromTo 0 2)
= lengthAcc 0 (enumFromTo 0 2)
= lengthAcc 0 (0 : enumFromTo (0 + 1) 2)
= lengthAcc (1 + 0) (enumFromTo (0 + 1) 2)
= lengthAcc (1 + 0) (1 : enumFromTo (1 + 1) 2)
= lengthAcc (1 + (1 + 0)) (enumFromTo (1 + 1) 2)
...
= lengthAcc (1 + (1 + (1 + 0))) []
= 1 + (1 + (1 + 0))
= ...
= 3

Also runs in linear space.

Well-Typed

Definition(s) of length

We can fix the problem by artifically making lengthAcc more strict:

length :: [a] -> Int
length = lengthAcc 0
lengthAcc :: Int -> [a] -> Int
lengthAcc !acc [] = acc
lengthAcc !acc (_ : xs) = lengthAcc (1 + acc) xs

A bang patternmatch will force the argument into WHNF, just as if it
was a constructor match.

Well-Typed

Definition(s) of length

We can fix the problem by artifically making lengthAcc more strict:

length :: [a] -> Int
length = lengthAcc 0
lengthAcc :: Int -> [a] -> Int
lengthAcc !acc [] = acc
lengthAcc !acc (_ : xs) = lengthAcc (1 + acc) xs

A bang patternmatch will force the argument into WHNF, just as if it
was a constructor match.

Well-Typed

Equational reasoning

length (enumFromTo 0 2)
= lengthAcc 0 (enumFromTo 0 2)
= lengthAcc 0 (0 : enumFromTo (0 + 1) 2)
= lengthAcc (1 + 0) (enumFromTo (0 + 1) 2)

= lengthAcc 1 (enumFromTo (0 + 1) 2)
= lengthAcc 1 (1 : enumFromTo (1 + 1) 2)
= lengthAcc 2 (2 : enumFromTo (2 + 1) 2)
= lengthAcc 3 []
= 3

Now runs in constant space (but still linear time).

Well-Typed

Equational reasoning

length (enumFromTo 0 2)
= lengthAcc 0 (enumFromTo 0 2)
= lengthAcc 0 (0 : enumFromTo (0 + 1) 2)
= lengthAcc (1 + 0) (enumFromTo (0 + 1) 2)

= lengthAcc 1 (enumFromTo (0 + 1) 2)
= lengthAcc 1 (1 : enumFromTo (1 + 1) 2)
= lengthAcc 2 (2 : enumFromTo (2 + 1) 2)
= lengthAcc 3 []
= 3

Now runs in constant space (but still linear time).

Well-Typed

Equational reasoning

length (enumFromTo 0 2)
= lengthAcc 0 (enumFromTo 0 2)
= lengthAcc 0 (0 : enumFromTo (0 + 1) 2)
= lengthAcc (1 + 0) (enumFromTo (0 + 1) 2)
= lengthAcc 1 (enumFromTo (0 + 1) 2)

= lengthAcc 1 (1 : enumFromTo (1 + 1) 2)
= lengthAcc 2 (2 : enumFromTo (2 + 1) 2)
= lengthAcc 3 []
= 3

Now runs in constant space (but still linear time).

Well-Typed

Equational reasoning

length (enumFromTo 0 2)
= lengthAcc 0 (enumFromTo 0 2)
= lengthAcc 0 (0 : enumFromTo (0 + 1) 2)
= lengthAcc (1 + 0) (enumFromTo (0 + 1) 2)
= lengthAcc 1 (enumFromTo (0 + 1) 2)
= lengthAcc 1 (1 : enumFromTo (1 + 1) 2)

= lengthAcc 2 (2 : enumFromTo (2 + 1) 2)
= lengthAcc 3 []
= 3

Now runs in constant space (but still linear time).

Well-Typed

Equational reasoning

length (enumFromTo 0 2)
= lengthAcc 0 (enumFromTo 0 2)
= lengthAcc 0 (0 : enumFromTo (0 + 1) 2)
= lengthAcc (1 + 0) (enumFromTo (0 + 1) 2)
= lengthAcc 1 (enumFromTo (0 + 1) 2)
= lengthAcc 1 (1 : enumFromTo (1 + 1) 2)
= lengthAcc 2 (2 : enumFromTo (2 + 1) 2)
= lengthAcc 3 []
= 3

Now runs in constant space (but still linear time).

Well-Typed

Aside: more on bang patterns

Note: bang patterns only ever make sense on variables.

(Why?)

Well-Typed

Aside: seq

Historically, Haskell has had seq to control evaluation.

It is primitive, but you could define it in terms of bang patterns:

seq :: a -> b -> b
seq !_ y = y

lengthAcc :: Int -> [a] -> Int
lengthAcc acc [] = acc
lengthAcc acc (_ : xs) = seq acc (lengthAcc (1 + acc) xs)

Well-Typed

Aside: seq

Historically, Haskell has had seq to control evaluation.

It is primitive, but you could define it in terms of bang patterns:

seq :: a -> b -> b
seq !_ y = y

lengthAcc :: Int -> [a] -> Int
lengthAcc acc [] = acc
lengthAcc acc (_ : xs) = seq acc (lengthAcc (1 + acc) xs)

Well-Typed

Question about seq

Why not

force :: a -> a
force x = seq x x

lengthAcc :: Int -> [a] -> Int
lengthAcc acc [] = acc
lengthAcc acc (_ : xs) = lengthAcc (force (1 + acc)) xs

force is just id . It does not create any demand that does not
already exist.

Well-Typed

Question about seq

Why not

force :: a -> a
force x = seq x x

lengthAcc :: Int -> [a] -> Int
lengthAcc acc [] = acc
lengthAcc acc (_ : xs) = lengthAcc (force (1 + acc)) xs

force is just id . It does not create any demand that does not
already exist.

Well-Typed

Demand analysis

With optimisations on, GHC will detect that the original accumulating
version of length will always eventually use the accumulator and
make it strict even without bang pattern.

Well-Typed

Yet another definition of length

length :: [a] -> Int
length = lengthAcc 0
lengthAcc :: Int -> [a] -> Int
lengthAcc _ [] = 0
lengthAcc acc [_] = 1 + acc
lengthAcc acc (_ : xs) = lengthAcc (1 + acc) xs

This version does not always use acc , and therefore will not be
optimised to use a strict accumulator.

Well-Typed

Returning to our initial example

nullViaLength :: [a] -> Bool
nullViaLength xs = length xs == 0
example5a :: Int -> Bool
example5a n = nullViaLength [0 .. n]

Constant space, but linear time, and therefore unsuitable as a
definition of null .

Well-Typed

Returning to our initial example

nullViaLength :: [a] -> Bool
nullViaLength xs = length xs == 0
example5a :: Int -> Bool
example5a n = nullViaLength [0 .. n]

Constant space, but linear time, and therefore unsuitable as a
definition of null .

Well-Typed

Another variant

if nullViaLength xs
then ...
else ... sum xs ...

Sharing can turn something that just looks unnecessarily inefficient
into a space leak.

Well-Typed

Another variant

if nullViaLength xs
then ...
else ... sum xs ...

Sharing can turn something that just looks unnecessarily inefficient
into a space leak.

Well-Typed

Example 6: unfair partitioning

Partitioning a list

example6 :: Int -> (Int, Int)
example6 n =
case partition (>= 0) [0 .. n] of
(xs, ys) -> (sum xs, sum ys)

(Think of (>= 0) as some kind of sanity check.)

Well-Typed

Defining partition

partition :: (a -> Bool) -> [a] -> ([a], [a])
partition _ [] = ([], [])
partition p (x : xs) =
case partition p xs of
(ys, zs)

| p x -> (x : ys, zs)
| otherwise -> (ys, x : zs)

Is this a good definition?

Well-Typed

Equational reasoning

partition (>= 0) (enumFromTo (0 .. 2))
= partition (>= 0) (0 : enumFromTo (0 + 1) 2)
= case partition (>= 0) (enumFromTo (0 + 1) 2) of

(ys, zs)
| (>= 0) 0 -> (0 : ys, zs)
| otherwise -> (ys, 0 : zs)

= ...
= case (case partition (>= 0) (enumFromTo (1 + 1) 2) of

(ys', zs')
| (>= 0) 1 -> (1 : ys, zs)
| otherwise -> (ys, 1 : zs)

) of
(ys, zs)

| (>= 0) 0 -> (0 : ys, zs)
| otherwise -> (ys, 0 : zs)

Oh no . . .

Well-Typed

Equational reasoning

partition (>= 0) (enumFromTo (0 .. 2))
= partition (>= 0) (0 : enumFromTo (0 + 1) 2)
= case partition (>= 0) (enumFromTo (0 + 1) 2) of

(ys, zs)
| (>= 0) 0 -> (0 : ys, zs)
| otherwise -> (ys, 0 : zs)

= ...
= case (case partition (>= 0) (enumFromTo (1 + 1) 2) of

(ys', zs')
| (>= 0) 1 -> (1 : ys, zs)
| otherwise -> (ys, 1 : zs)

) of
(ys, zs)

| (>= 0) 0 -> (0 : ys, zs)
| otherwise -> (ys, 0 : zs)

Oh no . . .

Well-Typed

Irrefutable pattern matches

We know the result of partition will be a pair, so why wait?

partition :: (a -> Bool) -> [a] -> ([a], [a])
partition _ [] = ([], [])
partition p (x : xs) =
case partition p xs of
~(ys, zs)

| p x -> (x : ys, zs)
| otherwise -> (ys, x : zs)

An irrefutablematch will always succeed. You can think of it as being
rewritten to using selectors.

Well-Typed

An equivalent but uglier definition of partition

partition :: (a -> Bool) -> [a] -> ([a], [a])
partition _ [] = ([], [])
partition p (x : xs) =
let r = partition p xs
in if p x

then (x : fst r, snd r)
else (fst r, x : snd r)

Well-Typed

Aside: irrefutable patterns

Why are irrefutable patterns so rare?

Because let pattern matches are implicitly irrefutable.

Can you think of other functions that morally require an
irrefutable pattern match?

Well-Typed

Aside: irrefutable patterns

Why are irrefutable patterns so rare?

Because let pattern matches are implicitly irrefutable.

Can you think of other functions that morally require an
irrefutable pattern match?

Well-Typed

Aside: irrefutable patterns

Why are irrefutable patterns so rare?

Because let pattern matches are implicitly irrefutable.

Can you think of other functions that morally require an
irrefutable pattern match?

Well-Typed

Equational reasoning

partition (>= 0) (enumFromTo (0 .. 2))
= partition (>= 0) (0 : enumFromTo (0 + 1) 2)
= let r = partition (>= 0) (enumFromTo (0 + 1) 2)

in if (>= 0) 0
then (0 : fst r, snd r)
else (fst r, 0 : snd r)

= let r = partition (>= 0) (enumFromTo (0 + 1) 2)
in (0 : fst r, snd r)

This is better. We already have quite a bit of information at this point – in
particular, the result is now in WHNF!

Well-Typed

Equational reasoning

partition (>= 0) (enumFromTo (0 .. 2))
= partition (>= 0) (0 : enumFromTo (0 + 1) 2)
= let r = partition (>= 0) (enumFromTo (0 + 1) 2)

in if (>= 0) 0
then (0 : fst r, snd r)
else (fst r, 0 : snd r)

= let r = partition (>= 0) (enumFromTo (0 + 1) 2)
in (0 : fst r, snd r)

This is better. We already have quite a bit of information at this point – in
particular, the result is now in WHNF!

Well-Typed

Equational reasoning

Let’s assume we place more demand on the first component of the result
pair, i.e., on fst r :

let r = partition (>= 0) (enumFromTo (0 + 1) 2)
in (0 : fst r, snd r)

= let r = let r' = partition (>= 0) (enumFromTo (1 + 1) 2)
in (1 : fst r', snd r')

in (0 : fst r, snd r)
= let r' = partition (>= 0) (enumFromTo (1 + 1) 2)

r = (1 : fst r', snd r')
in (0 : fst r, snd r)

= let r' = partition (>= 0) (enumFromTo (1 + 1) 2)
r = (1 : fst r', snd r')

in (0 : 1 : fst r', snd r)

Isn’t there still a problem here?

Well-Typed

Equational reasoning

Let’s assume we place more demand on the first component of the result
pair, i.e., on fst r :

let r = partition (>= 0) (enumFromTo (0 + 1) 2)
in (0 : fst r, snd r)

= let r = let r' = partition (>= 0) (enumFromTo (1 + 1) 2)
in (1 : fst r', snd r')

in (0 : fst r, snd r)

= let r' = partition (>= 0) (enumFromTo (1 + 1) 2)
r = (1 : fst r', snd r')

in (0 : fst r, snd r)
= let r' = partition (>= 0) (enumFromTo (1 + 1) 2)

r = (1 : fst r', snd r')
in (0 : 1 : fst r', snd r)

Isn’t there still a problem here?

Well-Typed

Equational reasoning

Let’s assume we place more demand on the first component of the result
pair, i.e., on fst r :

let r = partition (>= 0) (enumFromTo (0 + 1) 2)
in (0 : fst r, snd r)

= let r = let r' = partition (>= 0) (enumFromTo (1 + 1) 2)
in (1 : fst r', snd r')

in (0 : fst r, snd r)
= let r' = partition (>= 0) (enumFromTo (1 + 1) 2)

r = (1 : fst r', snd r')
in (0 : fst r, snd r)

= let r' = partition (>= 0) (enumFromTo (1 + 1) 2)
r = (1 : fst r', snd r')

in (0 : 1 : fst r', snd r)

Isn’t there still a problem here?

Well-Typed

Equational reasoning

Let’s assume we place more demand on the first component of the result
pair, i.e., on fst r :

let r = partition (>= 0) (enumFromTo (0 + 1) 2)
in (0 : fst r, snd r)

= let r = let r' = partition (>= 0) (enumFromTo (1 + 1) 2)
in (1 : fst r', snd r')

in (0 : fst r, snd r)
= let r' = partition (>= 0) (enumFromTo (1 + 1) 2)

r = (1 : fst r', snd r')
in (0 : fst r, snd r)

= let r' = partition (>= 0) (enumFromTo (1 + 1) 2)
r = (1 : fst r', snd r')

in (0 : 1 : fst r', snd r)

Isn’t there still a problem here?

Well-Typed

Selector thunk optimisation

let r' = partition (>= 0) (enumFromTo (1 + 1) 2)
r = (1 : fst r', snd r')

in (0 : 1 : fst r', snd r)
= let r' = partition (>= 0) (enumFromTo (1 + 1) 2)

in (0 : 1 : fst r', snd r')

The garbage collector will reduce selector thunks if possible, even if there’s
no explicit demand on them.

Well-Typed

Revisiting the example

example6 :: Int -> (Int, Int)
example6 n =
case partition (>= 0) [0 .. n] of
(xs, ys) -> (sum xs, sum ys)

Well-Typed

Equational reasoning

case partition (>= 0) (enumFromTo 0 2) of
(xs, ys) -> (sum xs, sum ys)

= case (let r = partition (>= 0) (enumFromTo (0 + 1) 2)
in (0 : fst r, snd r)) of

(xs, ys) -> (sum xs, sum ys)
= let r = partition (>= 0) (enumFromTo (0 + 1) 2)

in (sum (0 : fst r), sum (snd r))

This is in WHNF. Will it be ok if we proceed placing demand on it, e.g. by
printing the result?

Well-Typed

Equational reasoning

case partition (>= 0) (enumFromTo 0 2) of
(xs, ys) -> (sum xs, sum ys)

= case (let r = partition (>= 0) (enumFromTo (0 + 1) 2)
in (0 : fst r, snd r)) of

(xs, ys) -> (sum xs, sum ys)

= let r = partition (>= 0) (enumFromTo (0 + 1) 2)
in (sum (0 : fst r), sum (snd r))

This is in WHNF. Will it be ok if we proceed placing demand on it, e.g. by
printing the result?

Well-Typed

Equational reasoning

case partition (>= 0) (enumFromTo 0 2) of
(xs, ys) -> (sum xs, sum ys)

= case (let r = partition (>= 0) (enumFromTo (0 + 1) 2)
in (0 : fst r, snd r)) of

(xs, ys) -> (sum xs, sum ys)
= let r = partition (>= 0) (enumFromTo (0 + 1) 2)

in (sum (0 : fst r), sum (snd r))

This is in WHNF. Will it be ok if we proceed placing demand on it, e.g. by
printing the result?

Well-Typed

Example 7: fair partitioning

A variant of our previous example

example7a :: Int -> (Int, Int)
example7a n =
case partition even [0 .. n] of
(xs, ys) -> (sum xs, sum ys)

The only difference is that we are using even instead of (>= 0) .

Well-Typed

Equational reasoning

case partition even (enumFromTo 0 2) of
(xs, ys) -> (sum xs, sum ys)

= case (let r = partition even (enumFromTo (0 + 1) 2)
in (0 : fst r, snd r)) of

(xs, ys) -> (sum xs, sum ys)
= let r = partition even (enumFromTo (0 + 1) 2)

in (sum (0 : fst r), sum (snd r))
= let r = partition even (enumFromTo (1 + 1) 2)

in (sumAcc 0 (fst r), sum (1 : snd r))

While we are evaluating the first component of the pair, the second
component grows larger . . .

Well-Typed

Equational reasoning

case partition even (enumFromTo 0 2) of
(xs, ys) -> (sum xs, sum ys)

= case (let r = partition even (enumFromTo (0 + 1) 2)
in (0 : fst r, snd r)) of

(xs, ys) -> (sum xs, sum ys)

= let r = partition even (enumFromTo (0 + 1) 2)
in (sum (0 : fst r), sum (snd r))

= let r = partition even (enumFromTo (1 + 1) 2)
in (sumAcc 0 (fst r), sum (1 : snd r))

While we are evaluating the first component of the pair, the second
component grows larger . . .

Well-Typed

Equational reasoning

case partition even (enumFromTo 0 2) of
(xs, ys) -> (sum xs, sum ys)

= case (let r = partition even (enumFromTo (0 + 1) 2)
in (0 : fst r, snd r)) of

(xs, ys) -> (sum xs, sum ys)
= let r = partition even (enumFromTo (0 + 1) 2)

in (sum (0 : fst r), sum (snd r))

= let r = partition even (enumFromTo (1 + 1) 2)
in (sumAcc 0 (fst r), sum (1 : snd r))

While we are evaluating the first component of the pair, the second
component grows larger . . .

Well-Typed

Equational reasoning

case partition even (enumFromTo 0 2) of
(xs, ys) -> (sum xs, sum ys)

= case (let r = partition even (enumFromTo (0 + 1) 2)
in (0 : fst r, snd r)) of

(xs, ys) -> (sum xs, sum ys)
= let r = partition even (enumFromTo (0 + 1) 2)

in (sum (0 : fst r), sum (snd r))
= let r = partition even (enumFromTo (1 + 1) 2)

in (sumAcc 0 (fst r), sum (1 : snd r))

While we are evaluating the first component of the pair, the second
component grows larger . . .

Well-Typed

A better way?

The problematic pattern here is that we are generating

([Int], [Int])

but the generation of the two lists is not independent, and the
distribution is not statically known.

partitionEvenSums :: [Int] -> (Int, Int)
partitionEvenSums = partitionEvenSumsAcc (0, 0)
partitionEvenSumsAcc :: (Int, Int) -> [Int] -> (Int, Int)
partitionEvenSumsAcc (!x, !y) [] = (x, y)
partitionEvenSumsAcc (!x, !y) (z : zs) =
if even z then partitionEvenSumsAcc (x + z, y) zs

else partitionEvenSumsAcc (x, y + z) zs

Well-Typed

A better way?

The problematic pattern here is that we are generating

([Int], [Int])

but the generation of the two lists is not independent, and the
distribution is not statically known.

partitionEvenSums :: [Int] -> (Int, Int)
partitionEvenSums = partitionEvenSumsAcc (0, 0)
partitionEvenSumsAcc :: (Int, Int) -> [Int] -> (Int, Int)
partitionEvenSumsAcc (!x, !y) [] = (x, y)
partitionEvenSumsAcc (!x, !y) (z : zs) =
if even z then partitionEvenSumsAcc (x + z, y) zs

else partitionEvenSumsAcc (x, y + z) zs

Well-Typed

Revisiting the example

example7b :: Int -> (Int, Int)
example7b n = partitionEvenSums [0 .. n]

This works in constant space (but is less modular).

Libraries such as foldl or streamly can help restore modularity here.

Well-Typed

Revisiting the example

example7b :: Int -> (Int, Int)
example7b n = partitionEvenSums [0 .. n]

This works in constant space (but is less modular).

Libraries such as foldl or streamly can help restore modularity here.

Well-Typed

Writer monad

data Writer w a = Writer w a

A similar problem arises here as we have seen for partitioning. For
Writer , it is typically even worse because monadic computations will
often run for a very long time.

Well-Typed

Example 8: effectful traversals

Traversing a list

example8a n = length <$> traverse pure [0 .. n]

Definition of traverse on lists:

traverse :: Applicative f => (a -> f b) -> [a] -> f [b]
traverse _ [] = pure []
traverse f (x : xs) = pure (:) <*> f x <*> traverse f xs

Well-Typed

Traversing a list

example8a n = length <$> traverse pure [0 .. n]

Definition of traverse on lists:

traverse :: Applicative f => (a -> f b) -> [a] -> f [b]
traverse _ [] = pure []
traverse f (x : xs) = pure (:) <*> f x <*> traverse f xs

Well-Typed

What applicative functor?

Does the choice of applicative functor matter?

What about each of

▶ Identity

▶ Maybe

▶ IO

Well-Typed

What applicative functor?

Does the choice of applicative functor matter?

What about each of

▶ Identity

▶ Maybe

▶ IO

Well-Typed

Identity

example8a :: Int -> Identity Int
newtype Identity a = Identity {runIdentity :: a}
instance Functor Identity where
fmap f x = pure f <*> x

instance Applicative Identity where
pure = Identity
f <*> x = Identity ((runIdentity f) (runIdentity x))

Well-Typed

Equational reasoning

traverse pure (enumFromTo 0 2)
= traverse pure (0 : enumFromTo (0 + 1) 2)
= pure (:) <*> pure 0

<*> traverse pure (enumFromTo (0 + 1) 2)

= Identity (runIdentity (pure (:)) <*> runIdentity (pure 0))
<*> traverse pure (enumFromTo (0 + 1) 2)

= Identity ((:) 0)
<*> traverse pure (enumFromTo (0 + 1) 2)

= Identity
(0 : runIdentity (traverse pure (enumFromTo (0 + 1) 2)))

This looks fine (and it is).

Runs in constant space.

Well-Typed

Equational reasoning

traverse pure (enumFromTo 0 2)
= traverse pure (0 : enumFromTo (0 + 1) 2)
= pure (:) <*> pure 0

<*> traverse pure (enumFromTo (0 + 1) 2)
= Identity (runIdentity (pure (:)) <*> runIdentity (pure 0))

<*> traverse pure (enumFromTo (0 + 1) 2)

= Identity ((:) 0)
<*> traverse pure (enumFromTo (0 + 1) 2)

= Identity
(0 : runIdentity (traverse pure (enumFromTo (0 + 1) 2)))

This looks fine (and it is).

Runs in constant space.

Well-Typed

Equational reasoning

traverse pure (enumFromTo 0 2)
= traverse pure (0 : enumFromTo (0 + 1) 2)
= pure (:) <*> pure 0

<*> traverse pure (enumFromTo (0 + 1) 2)
= Identity (runIdentity (pure (:)) <*> runIdentity (pure 0))

<*> traverse pure (enumFromTo (0 + 1) 2)
= Identity ((:) 0)

<*> traverse pure (enumFromTo (0 + 1) 2)

= Identity
(0 : runIdentity (traverse pure (enumFromTo (0 + 1) 2)))

This looks fine (and it is).

Runs in constant space.

Well-Typed

Equational reasoning

traverse pure (enumFromTo 0 2)
= traverse pure (0 : enumFromTo (0 + 1) 2)
= pure (:) <*> pure 0

<*> traverse pure (enumFromTo (0 + 1) 2)
= Identity (runIdentity (pure (:)) <*> runIdentity (pure 0))

<*> traverse pure (enumFromTo (0 + 1) 2)
= Identity ((:) 0)

<*> traverse pure (enumFromTo (0 + 1) 2)
= Identity

(0 : runIdentity (traverse pure (enumFromTo (0 + 1) 2)))

This looks fine (and it is).

Runs in constant space.

Well-Typed

Maybe

example8b :: Int -> Maybe Int

data Maybe a = Nothing | Just a
instance Functor Maybe where
fmap f x = pure f <*> x

instance Applicative Maybe where
pure = Just
Nothing <*> _ = Nothing
Just _ <*> Nothing = Nothing
Just f <*> Just x = Just (f x)

Well-Typed

Equational reasoning

traverse pure (enumFromTo 0 2)
= traverse pure (0 : enumFromTo (0 + 1) 2)
= pure (:) <*> pure 0

<*> traverse pure (enumFromTo (0 + 1) 2)
= Just (:) <*> Just 0

<*> traverse pure (enumFromTo (0 + 1) 2)
= Just ((:) 0) <*> traverse pure (enumFromTo (0 + 1) 2)

This is looking bad.

Runs in linear space.

Well-Typed

A possible fix

traverseLength :: [a] -> Maybe Int
traverseLength = traverseLengthAcc 0
traverseLengthAcc :: Int -> [a] -> Maybe Int
traverseLengthAcc !acc [] = Just acc
traverseLengthAcc !acc (x : xs) =
pure x *> traverseLengthAcc (1 + acc) xs

Well-Typed

Conclusions

	Informal introduction
	Example 1: null
	Example 2: null via equality
	Example 3: self equality
	Example 4: map vs. reverse
	Example 5: length
	Example 6: unfair partitioning
	Example 7: fair partitioning
	Example 8: effectful traversals
	Conclusions

